
#OccupyLanguageDesign
Give the power of language

extension to the 99%!

So, here’s the problem. Right now it is too difficult for the mainstream programmer to extend their
language. All the power of language extension is controlled by the 1% -- the language designers! And
what we want to do is give the power of language extension back the the 99%.

Growing a Language (Guy Steele)

Let my language grow!

So this idea has been around a while. Guy Steele gave a famous talk a number of years ago
about growing a language. He encouraged language designers to build their languages with
the goal of enabling grassroots language innovation.

Some languages
are extensible...

Lisp, Scheme (Macros!)
JavaScript, Java

:-)

Smalltalk, Python, Ruby
(Pure Objects!)

:-(

...others not
so much

Some languages do a really good job at this. For example Lisp and Scheme have macros
which allow you to do crazy things with syntax. In Smalltalk, Python, and Ruby everything is
an object which make extension pretty easy. In Smalltalk you can even create your own
control structures. But other languages like JavaScript and Java are not quite so extensible.

ObjectsPrimitive Values

Radical Split

And the reason they are not so extensible is that these languages have a radical split between
primitive values and objects. Objects allow you to extend the language but you can’t add new
primitives. And object don’t interact well with primitives.

x = 5
y = 4

z = x + y

x = Complex(5,1)
y = Complex(4, 2)

z = x + y
z = x.plus(y)

ObjectsPrimitive Values

Radical Split

For example, consider adding a Complex number to the language. You can do this by
creating a new Complex object with the appropriate logic. But the built-in “add” operator is
only defined for primitive numbers so you can’t use “add” for the Complex object. So existing
code that expects numbers and uses the “add” operator won’t work with the new complex
object.

Objects

Primitive
Values

Virtual Values

Virtual Values:
a new value to bridge the gap

So we’re going to solve this problem by introducing a new value to the language. A Virtual
Value. And this virtual value is going to act as a bridge between primitive values and objects.
We call it virtual because it can “pretend” to be either a primitive or an object or both at the
same time.

Behavioral Intercession

add behavior

set behavior

...

x + y

x.foo = 42

...

Virtual values work by using the technique of behavioral intercession. The idea of behavioral
intercession is that it allows programmers to write custom logic for every behavior the occurs
on a value. Behaviors are things like “add” (the plus operator) and “set” (setting a property on
an object). You can probably fill in the rest of the behaviors.

Creating a Virtual Value

v = new VirtualValue({
add: (right) -> ...
set: (name,val) -> ...
...

})

...

So programmers create virtual values with a handler. The handler is a collection of traps and
each trap is a function that corresponds to a particular behavior. Each of the traps have the
custom logic for handling the appropriate behavior.

Using a Virtual Value

v.add(42)

v = new VirtualValue({
add: (right) -> ...
set: (name,val) -> ...
...

})

v + 42

So what happens is the runtime system converts behaviors on virtual values to calls to a trap.
For example the “add” operator here is converted to a call to the “add” trap. The is the key
idea: virtual values trap on behaviors and allow the programmer to add custom logic.

Virtual Values
are powerful!

Numeric types
Units of measure
Contracts
Taint analysis

Revocable membranes
Lazy Evaluation
FRP
Partial Evaluation
...

Once we’ve added virtual values to our language we can now do all kinds of extensions.
Adding new numeric types like Complex numbers, units of measure, contracts, and so on.
None of this was possible before in a language like JavaScript until we added virtual values.

T. V. Cutsem and M. S. Miller. Proxies: Design principles for robust object-oriented intercession APIs

JavaScript Proxies

handler = {

test: ...
}

call: ...

get: ...
set: ...

geti: ...
seti: ...
unary: ...
left: ...
right: ...

Virtual Values

contracts
membranes

complex
units

nonProxy

taint tracking
lazy evaluation

Related Work

Virtual values are based on some prior work on JavaScript proxies (this is work by Tom van
Cutsem and Mark Miller). JS proxies do behavior intercession but only for objects and
functions. And we show how we can extend that to include primitive values. Doing this
enables a bunch of extensions that weren’t possible with just JS proxies.

Photo credits:

OOPSLA paper: Virtual Values for Language Extension
 Thomas H. Austin, Tim Disney, Cormac Flanagan

tim.disney@gmail.com
Tim Disney

@disnet

semantics example extensions implementation+ +

http://www.flickr.com/photos/kapkap/6189122974/
http://www.flickr.com/photos/breun/2149454365/

Join the 99%!
#OccupyLanguageDesign

So if you’re interested in this check out a paper that was in this years OOPSLA. We have full
semantics, some example extensions, and an implementation for JavaScript.

And I leave you with this: Join the 99% -- Occupy Language Design!

mailto:tim.disney@gmail.com
mailto:tim.disney@gmail.com
http://www.flickr.com/photos/kapkap/6189122974/
http://www.flickr.com/photos/kapkap/6189122974/
http://www.flickr.com/photos/breun/2149454365/
http://www.flickr.com/photos/breun/2149454365/

