
Virtual Values for
Language Extension

Thomas H. Austin, Tim Disney, Cormac Flanagan
University of California Santa Cruz

Virtual Values provide the extensibility of
purely OO languages in mixed languages

extensibility: ability for user-programmers to change the language

x + y

How do we add complex numbers?

class Complex(object):

 def __init__(self, real, imag):
 self.r = real
 self.i = imag

 def __add__(self, other):
 return Complex(self.r + other.r,
 self.i + other.i)

Extensibility in Python is clean

Everything is an object in Python

class Complex(object):

 def __init__(self, real, imag):
 self.r = real
 self.i = imag

 def __add__(self, other):
 return Complex(self.r + other.r,
 self.i + other.i)

Extensibility in Python is clean

x = Complex(2, 1)
y = Complex(3, 1)

x + y

Everything is an object in Python

class Complex(object):

 def __init__(self, real, imag):
 self.r = real
 self.i = imag

 def __add__(self, other):
 return Complex(self.r + other.r,
 self.i + other.i)

Extensibility in Python is clean

x = Complex(2, 1)
y = Complex(3, 1)

x + y

Everything is an object in Python

Extensibility in JavaScript is ugly

function Complex(real, imag) {
 this.r = real;
 this.i = imag;
}
Complex.prototype.plus(other) {
 return new Complex(this.r + other.r,
 this.i + other.i);
}

JS has mixed objects and primitives so ugly

Extensibility in JavaScript is ugly

var x = new Complex(2, 1);
var y = new Complex(3, 1);

x.plus(y);

function Complex(real, imag) {
 this.r = real;
 this.i = imag;
}
Complex.prototype.plus(other) {
 return new Complex(this.r + other.r,
 this.i + other.i);
}

JS has mixed objects and primitives so ugly

Extensibility in JavaScript is ugly

var x = new Complex(2, 1);
var y = new Complex(3, 1);

x.plus(y);

function Complex(real, imag) {
 this.r = real;
 this.i = imag;
}
Complex.prototype.plus(other) {
 return new Complex(this.r + other.r,
 this.i + other.i);
}

JS has mixed objects and primitives so ugly

function matrixMult(a, b) { ... }

matrixMult([[-3,-8,3],
 [-2,1,4]])

Even worse than ugly!

Our complex extension doesn’t work with existing code.

matrixMult([[new Complex(4,1), new Complex(2,1)],
 [new Complex(5,1), new Complex(8,1)]])

function matrixMult(a, b) { ... }

matrixMult([[-3,-8,3],
 [-2,1,4]])

Even worse than ugly!

Our complex extension doesn’t work with existing code.

matrixMult([[new Complex(4,1), new Complex(2,1)],
 [new Complex(5,1), new Complex(8,1)]])

function matrixMult(a, b) { ... }

matrixMult([[-3,-8,3],
 [-2,1,4]])

Even worse than ugly!

Our complex extension doesn’t work with existing code.

x.plus(y)

x + y
vs.

How do we get nicety of purely OO in langs with primitives?
(1) change semantics to have everything be an object
 (but this would be a hard/impossible task...note that it hasn’t been done in Java/JavaScript)
(2) we propose a targeted change: adding one new value

Virtualize the interface
between code and data

Virtual Values:

Have a targeted change...virtualize the interface with virtual values.

Code Data

x = 65
y = 1

x

65
y

1

Standard Addition

Here’s how normal addition looks like in pseudo-JS

Code Data

x = 65
y = 1

x

65
y

1

z = x + y +

Standard Addition

Here’s how normal addition looks like in pseudo-JS

Code Data

x = 65
y = 1

x

65
y

1

z

66

z = x + y +

Standard Addition

Here’s how normal addition looks like in pseudo-JS

handlerhandler
... ...

plus λ...

... ...

handler = {
...
plus: λr.

1 + r
}

Virtualized Addition

Code Data

+

Here’s our targeted virtualization. One new “virtual” value (syn with proxy) that has traps.

handlerhandler
... ...

plus λ...

... ...

handler = {
...
plus: λr.

1 + r
}

p = proxy(handler)

p

Virtualized Addition

Code Data

+

Here’s our targeted virtualization. One new “virtual” value (syn with proxy) that has traps.

handlerhandler
... ...

plus λ...

... ...

handler = {
...
plus: λr.

1 + r
}

z = p + 65

p = proxy(handler)

p

Virtualized Addition

Code Data

+

Here’s our targeted virtualization. One new “virtual” value (syn with proxy) that has traps.

handlerhandler
... ...

plus λ...

... ...

handler = {
...
plus: λr.

1 + r
}

z = p + 65

65
p = proxy(handler)

p

Virtualized Addition

Code Data

+

Here’s our targeted virtualization. One new “virtual” value (syn with proxy) that has traps.

handlerhandler
... ...

plus λ...

... ...

handler = {
...
plus: λr.

1 + r
}

z = p + 65

65

65

p = proxy(handler)

p

Virtualized Addition

Code Data

+

Here’s our targeted virtualization. One new “virtual” value (syn with proxy) that has traps.

handlerhandler
... ...

plus λ...

... ...

handler = {
...
plus: λr.

1 + r
}

z = p + 65

65

65

p = proxy(handler)

p

Virtualized Addition

Code Data

+

Here’s our targeted virtualization. One new “virtual” value (syn with proxy) that has traps.

handlerhandler
... ...

plus λ...

... ...

handler = {
...
plus: λr.

1 + r
}

z = p + 65

65

65

p = proxy(handler)

p z

66

Virtualized Addition

Code Data

+

Here’s our targeted virtualization. One new “virtual” value (syn with proxy) that has traps.

Virtualization is powerful!

Numeric types
Units
Contracts
Taint analysis

Revocable membranes
Lazy Evaluation
...

Once we have proxies we can do cool stuff.
Not possible in JS without virtual values.

λproxy
Idealized JavaScript-like language

idealized language with objects and primitives.

λproxy

λx. e
e1(e2)

Idealized JavaScript-like language

idealized language with objects and primitives.

λproxy

{ f : v }
o[f]
o[f] = v

λx. e
e1(e2)

Idealized JavaScript-like language

idealized language with objects and primitives.

λproxy

{ f : v }
o[f]
o[f] = v

λx. e
e1(e2)

if b e1 e2

24

!true
24 + 42

true

Idealized JavaScript-like language

idealized language with objects and primitives.

λproxy

{ f : v }
o[f]
o[f] = v

λx. e
e1(e2)

if b e1 e2

24

!true
24 + 42

true

Idealized JavaScript-like language

proxy(handler)

idealized language with objects and primitives.

handler = {

handler = {
get: λf...

handler = {
get: λf...

p = proxy(h)

handler = {
get: λf... p[f] → h.get(f)

p = proxy(h)

Code Data

o1 = {
 “f”: 42
}

o1o1
“f” 42

base
meta

how the virtualization works agin but for an object get

Code Data

handlerhandler
... ...

get λ...

... ...handler = {
 get: λn.
 log(...)
 o1[n]
 ...
}

o1 = {
 “f”: 42
}

o1o1
“f” 42

base
meta

how the virtualization works agin but for an object get

Code Data

handlerhandler
... ...

get λ...

... ...handler = {
 get: λn.
 log(...)
 o1[n]
 ...
}

o1 = {
 “f”: 42
}

o1o1
“f” 42

base
meta

p = proxy(handler) p

how the virtualization works agin but for an object get

Code Data

handlerhandler
... ...

get λ...

... ...handler = {
 get: λn.
 log(...)
 o1[n]
 ...
}

o1 = {
 “f”: 42
}

p[“f”]

o1o1
“f” 42

base
meta

p = proxy(handler) p

how the virtualization works agin but for an object get

Code Data

handlerhandler
... ...

get λ...

... ...handler = {
 get: λn.
 log(...)
 o1[n]
 ...
}

o1 = {
 “f”: 42
}

p[“f”]

o1o1
“f” 42

base
meta

p = proxy(handler) p

how the virtualization works agin but for an object get

Code Data

handlerhandler
... ...

get λ...

... ...handler = {
 get: λn.
 log(...)
 o1[n]
 ...
}

o1 = {
 “f”: 42
}

p[“f”]

o1o1
“f” 42

base
meta

p = proxy(handler) p

“f”

how the virtualization works agin but for an object get

Code Data

handlerhandler
... ...

get λ...

... ...handler = {
 get: λn.
 log(...)
 o1[n]
 ...
}

o1 = {
 “f”: 42
}

p[“f”]

o1o1
“f” 42

base
meta

p = proxy(handler) p

“f”

“f”

how the virtualization works agin but for an object get

Code Data

handlerhandler
... ...

get λ...

... ...handler = {
 get: λn.
 log(...)
 o1[n]
 ...
}

o1 = {
 “f”: 42
}

p[“f”]

o1o1
“f” 42

base
meta

p = proxy(handler) p

“f”

“f”

“f”

how the virtualization works agin but for an object get

handler = {
get: λf... p[f] → h.get(f)

p = proxy(h)

Virtualization often considered esoteric, interaction between meta levels.
But! Simple evaluation rules, basically as seen here.

handler = {

set: λf,v... p[f] = v → h.set(f,v)
get: λf... p[f] → h.get(f)

p = proxy(h)

Virtualization often considered esoteric, interaction between meta levels.
But! Simple evaluation rules, basically as seen here.

handler = {

set: λf,v... p[f] = v → h.set(f,v)
call: λv... p(v) → h.call(v)

get: λf... p[f] → h.get(f)
p = proxy(h)

Virtualization often considered esoteric, interaction between meta levels.
But! Simple evaluation rules, basically as seen here.

handler = {

set: λf,v... p[f] = v → h.set(f,v)
call: λv... p(v) → h.call(v)
geti: λr... o[p] → h.geti(o)

get: λf... p[f] → h.get(f)
p = proxy(h)

Virtualization often considered esoteric, interaction between meta levels.
But! Simple evaluation rules, basically as seen here.

handler = {

set: λf,v... p[f] = v → h.set(f,v)
call: λv... p(v) → h.call(v)
geti: λr... o[p] → h.geti(o)
seti: λr,v... o[p] = v → h.seti(o,v)

get: λf... p[f] → h.get(f)
p = proxy(h)

Virtualization often considered esoteric, interaction between meta levels.
But! Simple evaluation rules, basically as seen here.

handler = {

set: λf,v... p[f] = v → h.set(f,v)
call: λv... p(v) → h.call(v)
geti: λr... o[p] → h.geti(o)
seti: λr,v... o[p] = v → h.seti(o,v)
unary: λo... !p → h.unary(“!”)

get: λf... p[f] → h.get(f)
p = proxy(h)

Virtualization often considered esoteric, interaction between meta levels.
But! Simple evaluation rules, basically as seen here.

handler = {

set: λf,v... p[f] = v → h.set(f,v)
call: λv... p(v) → h.call(v)
geti: λr... o[p] → h.geti(o)
seti: λr,v... o[p] = v → h.seti(o,v)
unary: λo... !p → h.unary(“!”)
left: λo,r... p + x → h.left(“+”,x)

get: λf... p[f] → h.get(f)
p = proxy(h)

Virtualization often considered esoteric, interaction between meta levels.
But! Simple evaluation rules, basically as seen here.

handler = {

set: λf,v... p[f] = v → h.set(f,v)
call: λv... p(v) → h.call(v)
geti: λr... o[p] → h.geti(o)
seti: λr,v... o[p] = v → h.seti(o,v)
unary: λo... !p → h.unary(“!”)
left: λo,r... p + x → h.left(“+”,x)
right: λo,l... x + p → h.right(“+”,x)

get: λf... p[f] → h.get(f)
p = proxy(h)

Virtualization often considered esoteric, interaction between meta levels.
But! Simple evaluation rules, basically as seen here.

handler = {

set: λf,v... p[f] = v → h.set(f,v)
call: λv... p(v) → h.call(v)
geti: λr... o[p] → h.geti(o)
seti: λr,v... o[p] = v → h.seti(o,v)
unary: λo... !p → h.unary(“!”)
left: λo,r... p + x → h.left(“+”,x)
right: λo,l... x + p → h.right(“+”,x)
test: λ...

}
if p e e → if h.test() e e

get: λf... p[f] → h.get(f)
p = proxy(h)

Virtualization often considered esoteric, interaction between meta levels.
But! Simple evaluation rules, basically as seen here.

Extensions

Modules that provide proxy creating
functions that enable language extension

Now here’s what we can build with proxies

meter

research languages to track units...now just write this code...it exports “makeUnit” and you’re
done.

meter = makeUnit(“meter”)

meter

research languages to track units...now just write this code...it exports “makeUnit” and you’re
done.

meter = makeUnit(“meter”)

meter

1

“meter”

research languages to track units...now just write this code...it exports “makeUnit” and you’re
done.

meter = makeUnit(“meter”)

second = makeUnit(“second”)

meter

1

“meter”

research languages to track units...now just write this code...it exports “makeUnit” and you’re
done.

meter = makeUnit(“meter”)

second = makeUnit(“second”)

meter

1

“meter” 1

“second”

research languages to track units...now just write this code...it exports “makeUnit” and you’re
done.

meter = makeUnit(“meter”)

second = makeUnit(“second”)

g = 9.81 * meter / second / second

meter

1

“meter” 1

“second”

research languages to track units...now just write this code...it exports “makeUnit” and you’re
done.

meter = makeUnit(“meter”)

second = makeUnit(“second”)

g = 9.81 * meter / second / second

meter

9.81

“meter”

“second”-2

1

“meter” 1

“second”

research languages to track units...now just write this code...it exports “makeUnit” and you’re
done.

meter = makeUnit(“meter”)

second = makeUnit(“second”)

g = 9.81 * meter / second / second

meter

print(g) // “9.81 meters seconds^-2”
9.81

“meter”

“second”-2

1

“meter” 1

“second”

research languages to track units...now just write this code...it exports “makeUnit” and you’re
done.

meter = makeUnit(“meter”)

second = makeUnit(“second”)

g = 9.81 * meter / second / second

meter

g + 1 // Error: Units not compatible!

print(g) // “9.81 meters seconds^-2”
9.81

“meter”

“second”-2

1

“meter” 1

“second”

research languages to track units...now just write this code...it exports “makeUnit” and you’re
done.

meter = makeUnit(“meter”)

second = makeUnit(“second”)

g = 9.81 * meter / second / second

meter

g + 1 // Error: Units not compatible!

print(g) // “9.81 meters seconds^-2”

g + 1 * meter / second / second

9.81

“meter”

“second”-2

1

“meter” 1

“second”

research languages to track units...now just write this code...it exports “makeUnit” and you’re
done.

meter = makeUnit(“meter”)

second = makeUnit(“second”)

g = 9.81 * meter / second / second

meter

g + 1 // Error: Units not compatible!

print(g) // “9.81 meters seconds^-2”

g + 1 * meter / second / second
10.81

“meter”

“second”-2

9.81

“meter”

“second”-2

1

“meter” 1

“second”

research languages to track units...now just write this code...it exports “makeUnit” and you’re
done.

can add new numeric types...complex keeps track of both the “real” and “imaginary” part

x = 4.0 + (1.0 * i)

can add new numeric types...complex keeps track of both the “real” and “imaginary” part

x = 4.0 + (1.0 * i)

y = 3.0 + (1.0 * i)

can add new numeric types...complex keeps track of both the “real” and “imaginary” part

x = 4.0 + (1.0 * i)

y = 3.0 + (1.0 * i)

x + y 7

real imaginary

2

can add new numeric types...complex keeps track of both the “real” and “imaginary” part

How do we enable extensions to
recognize the proxies they create?

during design ran into this problem
extension modules can generate proxies...how can they recognize them later

for example...

taint = λx.
 ...

Tainting Extension

isTainted = λx.
...

the idea of tainting

isTainted(taint(4) + 5) == true

taint = λx.
 ...

Tainting Extension

isTainted = λx.
...

the idea of tainting

isTainted(taint(4) + 5) == true

taint = λx.
 ...

Tainting Extension

isTainted = λx.
...

4

the idea of tainting

isTainted(taint(4) + 5) == true

taint = λx.
 ...

Tainting Extension

isTainted = λx.
...

4

4

the idea of tainting

isTainted(taint(4) + 5) == true

taint = λx.
 ...

Tainting Extension

isTainted = λx.
...

4

4 5+

9

the idea of tainting

isTainted(taint(4) + 5) == true

taint = λx.
 ...

Tainting Extension

isTainted = λx.
...

4

4 5+

9

the idea of tainting

isTainted(taint(4) + 5) == true

taint = λx.
 ...

Tainting Extension

isTainted = λx.
...

4

4 5+

9

true

the idea of tainting

taint = λx.
h = {...}
p = proxy(h)
unproxy[p] = x
p

Tainting Extension

isTainted = λx.
 if unproxy[x]
 then true
 else false

isTainted(taint(4) + 5) == true

unproxy = {}

taint and isTainted needs to collude

taint = λx.
h = {...}
p = proxy(h)
unproxy[p] = x
p

Tainting Extension

isTainted = λx.
 if unproxy[x]
 then true
 else false

unproxyunproxy
p1 v1

p2 v2

p3 v3

... ...

isTainted(taint(4) + 5) == true

unproxy = {}

taint and isTainted needs to collude

taint = λx.
h = {...}
p = proxy(h)
unproxy[p] = x
p

Tainting Extension

isTainted = λx.
 if unproxy[x]
 then true
 else false

unproxyunproxy
p1 v1

p2 v2

p3 v3

... ...

isTainted(taint(4) + 5) == true

unproxy = {}

taint and isTainted needs to collude

taint = λx.
h = {...}
p = proxy(h)
unproxy[p] = x
p

Tainting Extension

isTainted = λx.
 if unproxy[x]
 then true
 else false

unproxy = {}

Problem: geti/seti!

runs geti/seti traps

taint = λx.
h = {...}
p = proxy(h)
unproxy[p] = x
p

Tainting Extension

isTainted = λx.
 if unproxy[x]
 then true
 else false

unproxy = {}

Problem: geti/seti!

runs geti/seti traps

taint = λx.
h = {...}
p = proxy(h)
h.seti(unproxy,x)
p

Tainting Extension

isTainted = λx.
 if h.geti(unproxy)
 then true
 else false

unproxy = {}

Problem: geti/seti!

the unproxy table has no proxies

taint = λx.
h = {...}
p = proxy(h)
h.seti(unproxy,x)
p

Tainting Extension

isTainted = λx.
 if h.geti(unproxy)
 then true
 else false

unproxy = {}

Problem: geti/seti!

unproxyunproxy
v1 v1

v2 v2

v3 v3

... ...

the unproxy table has no proxies

taint = λx.
h = {...}
p = proxy(h)
h.seti(unproxy,x)
p

Tainting Extension

isTainted = λx.
 if h.geti(unproxy)
 then true
 else false

unproxy = {}

Solution

proxy(key,handler)

unProxy(key,p)

add function unProxy.

taint = λx.
h = {...}
p = proxy(h)
h.seti(unproxy,x)
p

Tainting Extension

isTainted = λx.
 if h.geti(unproxy)
 then true
 else false

unproxy = {}

Solution

proxy(key,handler)

unProxy(key,p)
must match

add function unProxy.

Tainting Extension

taint = λx.
...
proxy(key, h)

isTainted = λx.
 if unProxy(key, x)
 then true
 else false

key = {}

Solution

proxy(key,handler)

unProxy(key,p)
must match

collude with shared access to key

Security

Extensibility:

Security:

wants to extend behavior
of library extensions

wants to restrict behavior
of adversaries

desires are at odds

this works focuses on extnesibility but...

Security

isProxy(x)

...brute force security mechanism.

always tells the truth, proxies can’t trap

Security

isProxy(x)

Always tells the truth

...brute force security mechanism.

always tells the truth, proxies can’t trap

critical = λx.
if isProxy(x)
then err()
else ...

Stop proxies...

so if we have some critical code we can use it like so

Transitive proxy!

...not quite

critical = λx.
if isProxy(x)
then err()
else
y = x()
...

but! used naively it won’t work since a normal value could still produce a proxy

Another proxy!

Solution: use another proxy! Create a nonProxy extension that wraps all values in a proxy
that behaves like identity (passing all operations on to the original value) but checks that
each value is not a proxy. Also all values coming out of it must be wrapped in the nonProxy.

critical = λx.
x = nonProxy(x)
y = x()
...

Another proxy!

Solution: use another proxy! Create a nonProxy extension that wraps all values in a proxy
that behaves like identity (passing all operations on to the original value) but checks that
each value is not a proxy. Also all values coming out of it must be wrapped in the nonProxy.

critical = λx.
x = nonProxy(x)
y = x()
...

x
nonProxy

isProxy?

y

Another proxy!

Solution: use another proxy! Create a nonProxy extension that wraps all values in a proxy
that behaves like identity (passing all operations on to the original value) but checks that
each value is not a proxy. Also all values coming out of it must be wrapped in the nonProxy.

critical = λx.
x = nonProxy(x)
y = x()
...

yes

error!

x
nonProxy

isProxy?

y

Another proxy!

Solution: use another proxy! Create a nonProxy extension that wraps all values in a proxy
that behaves like identity (passing all operations on to the original value) but checks that
each value is not a proxy. Also all values coming out of it must be wrapped in the nonProxy.

critical = λx.
x = nonProxy(x)
y = x()
...

yes

error!

no y

y
nonProxy

x
nonProxy

isProxy?

y

Another proxy!

Solution: use another proxy! Create a nonProxy extension that wraps all values in a proxy
that behaves like identity (passing all operations on to the original value) but checks that
each value is not a proxy. Also all values coming out of it must be wrapped in the nonProxy.

Trusted Module Untrusted ModulenonProxy

So it acts a lot like a membrane.

T. V. Cutsem and M. S. Miller. Proxies: Design principles for robust object-oriented intercession APIs

JavaScript Proxies

handler = {

test: ...
}

call: ...

get: ...
set: ...

geti: ...
seti: ...
unary: ...
left: ...
right: ...

Virtual Values

contracts
membranes

complex
units

nonProxy

taint tracking
lazy evaluation

Quick word on related work. JS proxies are powerful can do some things
Used to build contracts.js/cs
But! Needs full set of traps to provide uniform trapping behavior.

More in paper

• Full operational semantics for λproxy

• Code for all extensions

• all under 50 lines

• Implementation in JavaScript

check it all out

Virtual Values allow you to extend the
extensibility benefits of purely OO languages

id :: (Num) -> Num
id = (x) -> x

id = guard(
 fun(Num, Num),
 function(x) {
 return x;
});

contracts.coffeecontracts.js

Built with JS Proxies

contracts in JS and CS (a JS like language with some syntax cleanup)

Implementation in Firefox

