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Abstract

Hygienic Macros for JavaScript

by

Tim Disney

Languages like Lisp, Scheme, and Racket have shown that powerful and expressive macro
systems can give programmers the ability to grow their own language. Unfortunately,
in languages with syntax like JavaScript, macros have had less success, due in part to
the difficulty of integrating macro expansion and complex grammars.

This dissertation describes sweet.js, a hygienic macro system for JavaScript
that fixes long standing challenges in lexing JavaScript and provides expressive pat-
tern matching that allows macros to manipulate the complex grammar of JavaScript.
With sweet.js programmers can experiment with syntax extensions for future versions
of JavaScript and craft domain specific languages.
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Chapter 1

Introduction

A key goal in the development of programming languages is abstraction. Ab-
straction facilities allow programmers to more easily reason about code; procedural
abstraction (e.g., functions) helps programmers reason at a high level about program
behavior while data abstraction (e.g., objects or ADTs) provides similar reasoning ben-
efits on the structure of data.

Syntactic abstraction facilities aim to provide similar reasoning benefits to the
syntax of programming languages. While virtually all modern languages have some
degree of procedural and data abstraction, syntactic abstraction is more rare.

Macro systems are one kind of syntactic abstraction facility that allow pro-
grammers to define new syntax in their language. Macros are particularly important
for extensible languages as a means of enabling a language that can grow [Steele, 1999].
In a language with macros, programmers can build syntax features that are specific to
their domain (i.e., macros can be used to implement domain specific languages) along
with creating broadly usable syntactic forms that could be standardized in future ver-
sions of the language.

Expressive macro systems have a long history in the design of extensible pro-
gramming languages going back to Lisp and Scheme [Foderaro et al., 1983, Kohlbecker
and Wand, 1987]. The Scheme community in particular introduced hygienic [Clinger,
1991, Dybvig et al., 1992] macros that prevent binding clashes from occurring during
macro expansion.
While expressive macro systems have been very successful in languages with s-
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expressions (for example, Racket [Matthew Flatt and PLT, 2010] provides extensive
support for constructing fully fledged languages [Tobin-Hochstadt et al., 2011] via its
macro system), in languages with more complex syntax, macros have had less success.
In part, this lack of success has been due to the difficulty in building expressive hygienic
macro systems for such languages.

JavaScript in particular presents a unique challenge for macros. JavaScript is
a challenge for macro systems due to its complex grammar and ambiguities in the lexing
and parsing stages.

In this dissertation I present a hygienic macro system for JavaScript, sweet.js,
that addresses many of the challenges in building a macro system for languages with a
complex grammar. There are three primary design goals that sweet.js address: resolving
the ambiguities in lexing and parsing JavaScript, enabling expressive macro definitions
for the complex grammar of JavaScript, and building a path towards full syntactic
abstraction.

1.1 Resolving Lexing and Parsing Ambiguities

While macro systems have found success in many Lisp-derived languages, they
have not been widely adopted in languages such as JavaScript. In part, this failure is due
to the difficulty of implementing macro systems for languages without fully delimited
s-expressions. A key feature of a sufficiently expressive macro system is the ability for
macros to manipulate unparsed and unexpanded subexpressions. In a language with
parentheses like Scheme, manipulating unparsed subexpressions is simple:

1 (if (> denom 0)

2 (/ x denom)

3 (error "divide by zero"))

The Scheme reader converts the source string into nested s-expressions that
macros can easily manipulate. Since each subexpression of the if form is a fully delim-
ited s-expression, it is straightforward to implement if as a macro.

Conceptually, the Scheme compiler lexes a source string into a stream of lex-
emes, which are then read into s-expressions before being macro expanded and parsed
into an abstract syntax tree.
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lexer Lexeme∗−−−−−→ reader Sexpr−−−→ expander/parser AST−−−→

As a first step to designing a Scheme-like macro system for a language like
JavaScript, it is necessary to introduce a read step into the compiler pipeline. However,
the lexical structure of mainstream languages can be surprisingly subtle. In JavaScript,
implementing a correct reader is complicated due to ambiguities in how regular ex-
pression literals (such as /[0-9]*/) and the divide operator (/) should be lexed. In
traditional JavaScript compilers, the parser and lexer are forced to be intertwined; a
JavaScript lexer cannot run in isolation. Rather, the parser calls out to the lexer from
a given grammatical context with a flag to indicate if the lexer should accept a regular
expression or a divide operator, and the input character stream is lexed accordingly. So
if the parser is in a context that accepts a regular expression, the characters “/x/” will
be lexed into the single lexeme /x/ otherwise it will lex into the individual lexemes /,
x, and /.

lexer
feedback
↼−−−−−−−−−−⇁
Lexeme∗

parser AST−−−→

An important first step to implement a macro system for JavaScript is to
remove the dependency between the lexing and parsing stages. Sweet.js includes a
separate reader that converts a sequence of lexemes into a sequence of tokens (tokens in
this setting are a little analogous to s-expressions in that they can be nested) without
feedback from the parser.

lexer Lexeme∗−−−−−→ reader Token∗−−−−→ expander/parser AST−−−→

The reader must account for the ambiguities caused by the symbol /. In this
dissertation I present a novel solution to resolving this lexing ambiguity in JavaScript
that enables the clean separation of the JavaScript lexer and parser. The key idea is to
record sufficient history information in the form of tokens in order to correctly decide
whether to parse /x/g as a regular expression or as division operators (as in 4.0/x/g).
Surprisingly, this history information needs to be remembered from arbitrarily far back
in the token stream. Thankfully, the reader can be implemented efficiently by collapsing
this history into a single boolean plus at most five tokens of lookbehind. An algorithm
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for this solution along with a proof that it does in fact correctly resolve ambiguities in
the language is presented in Chapter 3.

While the algorithm for resolving ambiguities I present here is specific to
JavaScript, the technique of recording history in the reader with token trees can be
applied to other languages with ambiguous grammars.

1.2 Declarative Macro Definitions

The second challenge for building an expressive macro system is declarative
macro definitions. To easily build and reason about a macro, macro authors need
declarative syntax. In Lisp or Scheme, since the base language is just s-expressions, it is
straightforward to provide declarative pattern matching for s-expressions, a technique
known as macro-by-example [Kohlbecker and Wand, 1987]. In a language like JavaScript
however, the base language is much more complex and the straightforward techniques of
macro-by-example are not sufficient. To address this challenge I extend the enforestation
technique of Rafkind [Rafkind, 2013, Rafkind and Flatt, 2012], which provides robust
and declarative pattern matching for syntactic forms in the base language.

Once JavaScript source has been correctly read, there are still a number of
challenges to building an expressive macro system. The lack of parentheses in particular
make writing declarative macro definitions difficult. For example, the if statement in
JavaScript allows undelimited then and else branches:

1 if (denom > 0)

2 x / denom;

3 else

4 throw "divide by zero";

It is necessary to know where the then and else branches end to correctly
implement an if macro, but this is complicated by the lack of delimiters.

The solution to this problem that we take is by progressively building a partial
AST during macro expansion. Macros can then match against and manipulate this
partial AST. For example, an if macro could indicate that the then and else branches
must be single statements and then manipulate them appropriately.

This approach, called enforestation, was pioneered by Honu [Rafkind and Flatt,
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2012], which I adapt here for JavaScript1.

1.3 Full Syntactic Abstraction

A key design goal that sweet.js strives for and partially achieves is full syntactic
abstraction. This goal stems from the desire to enable programmers to extend any
syntactic form in JavaScript in a transparent manner. In particular, a programmer who
uses sweet.js should not be able to textually distinguish between a builtin syntactic form
and a syntactic form that is implemented via a macro. This design goal distinguishes
sweet.js from other macro systems such as Template Haskell [Sheard and Jones, 2002]
or Rust [Matsakis and Klock, 2014] that use special syntax at macro invocation sites.

In addition, full syntactic abstraction means that any syntactic form in the
base language should be implementable via a macro. This goal has motivated the
implementation of infix macros (which allow macros to be written that match syntax
before the macro identifier). Infix macros enable, for example, the implementation
of the arrow function that is standardized in the latest version of JavaScript, ES2015
[International, 2015].

1.4 Implementation

Sweet.js is implemented in JavaScript, is publicly available, and is open source.
Sweet.js is a compiler that takes source code written with sweet.js macros and gener-
ates source code with the macros expanded away that can be run in any JavaScript
environment. The project web page2 includes an interactive browser-based editor that
makes it simple to try out writing macros without requiring any installation. Figure
1.1 shows the editor in action; a macro implementing classes is being edited in the left
pane and the right pane continually shows the expanded output. There is already an
active community using sweet.js, for example, to implement significant features from
the upcoming ES2015 version of JavaScript [Long] or implement pattern matching in
JavaScript [Faubion].

1The syntax of Honu is similar to JavaScript but does not support regular expression literals, which
simplifies the Honu reader.

2http://sweetjs.org
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Figure 1.1: The Sweet.js Editor
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Sweet.js has been developed in the open with over 30 contributors providing
documentation, bug reports, bug fixes, and significant features. At the time of this
writing it has been starred on GitHub over 3,000 times, forked over 100 times, and the
Node.js package for sweet.js3 has been downloaded over 22,000 times.

1.5 Contributions

The key contributions of this dissertation are:

• a novel read algorithm that resolves long standing ambiguities in the lexical struc-
ture of JavaScript

• a proof of correctness for the read algorithm

• a formalization of hygienic macro expansion with enforestation for a simplified
JavaScript-like language

• an implementation of a hygienic macro system for full JavaScript called sweet.js

• an evaluation of sweet.js via two language extensions:

• a contract system for JavaScript

• an extension of the ES2015 Proxy API that supports primitive operations and
primitive values

1.6 Outline

In Chapter 2 I present a user-centered overview of sweet.js and demonstrate
how to build a variety of macros using the system. Chapter 3 shows how to separate
the JavaScript lexer and parser. Chapter 4 presents a non-hygienic formal semantics for
macro expansion while Chapter 5 describes hygiene and extension the formal semantics
to maintain hygiene. Chapters 6 and 7 describe using macros to build a contract system
and extend JavaScript to support virtual values respectively. Chapter 8 summarizes the
design goals and lessons learned in sweet.js, reviews related work, and concludes.

3https://www.npmjs.com/package/sweet.js
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Chapter 2

The Sweet.js Macro System

In this chapter I present the programmer’s view of using sweet.js to build a
variety of syntax abstractions. Later chapters will discuss the implementation details
of sweet.js. As motivation, I use a series of macros that implement features that have
either been standardized in ES2015 or are being proposed for future standardization.
Some of the macros covered in this chapter are also available as a robust implementation
in the es6-macros project [Long] created by James Long.

Sweet.js provides two kinds of macros: rule and case macros (respectively
analogous to the syntax-rules [Clinger, 1991] and syntax-case [Dybvig et al., 1992]
Scheme forms). Rule macros are more straightforward to explain and I will discuss
them first.

Rule macros are based on the macro-by-example tradition of declarative macro
definitions. A rule macro declaration allows a programmer to specify an example syntax
pattern to match against and an example syntax template into which the matched syntax
is transformed.

1 macro <name> {

2 rule { <pattern> } => { <template> }

3 }

To a first approximation (this will grow as I work through various examples)
the pattern language contains:

• $variable – any identifier beginning with a $ is a pattern variable and matches a
single token, binding it to the variable name
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• <pattern> . . . – match zero or more of <pattern>

• <pattern> (,) . . . – match zero or more of <pattern> where a , separates each
repetition

• everything else matches literally

For the purposes of a pattern variable, a token includes both the “standard”
tokens (e.g., an identifier such as foo or a string literal like "macros are sweet!") but
also delimiter matched groups of tokens. The source (24 + 42) counts as a single token
for binding to a single pattern variable. Treating delimiter groups as tokens is very
useful for expressive macros and will be discussed further in Chapter 3.

2.1 Implementing Class

JavaScript is a prototype-based object oriented system rather than the more
traditional class-based system of most other OO languages. While the prototype-based
approach is powerful and can simulate traditional class patterns, the syntax is unin-
tuitive. For example, the syntax used to define a Cat object with two methods is as
follows:

1 function Cat(name, age) {

2 this.name = name;

3 this.age = age;

4 }

5 Cat.prototype.canHaz = function(haz) {

6 return this.name " can haz " + haz;

7 }

8 Cat.prototype.toString = function() {

9 return "Cat " + this.name + ", age: " + this.age;

10 }

The ES2015 standard introduces a more intuitive class form for object decla-
rations patterns like this example. Using class the Cat definition becomes:

1 class Cat {

2 constructor (name, age) {

3 this.name = name;

4 this.age = age;
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5 }

6 canHaz (haz) {

7 return this.name " can haz " + haz;

8 }

9 toString () {

10 return "Cat " + this.name + ", age: " + this.age;

11 }

12 }

As a first step to implement the class form with a macro, here is a basic
implementation that only supports the constructor function:

1 macro class {

2 rule {

3 $name {

4 constructor ($params (,) . . .) { $body . . . }

5 }

6 } => {

7 function $name ($params (,) . . .) { $body . . . }

8 }

9 }

Using this macro definition, the expansion of a Cat class is shown in Figure
2.1. In this example the pattern variable $name matches Cat, the pattern constructor

matches the literal token constructor, the parameters name and age are bound to the
repeated pattern variable $params, and all of the tokens inside of the constructor body
are matched with $body.

Extending the class macro to handle methods requires the ability to match
on a repeated group of patterns, which is handled by the grouping $() pattern.

1 macro class {

2 rule {

3 $name {

4 constructor ($params (,) . . .) { $body . . . }

5 $(

6 $mname ($mparams (,) . . .) { $mbody . . . }

7 ) . . .

8 }
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Figure 2.1: Class Expansion

1 class Cat {

2 constructor(name, age) {

3 this.name = name;

4 this.age = age;

5 }

6 }

expands to ⇒
1 function Cat(name, age) {

2 this.name = name;

3 this.age = age;

4 }

9 } => {

10 function $name ($params (,) . . .) { $body . . . }

11 $(

12 $name.prototype.$mname = function $mname($mparams (,) . . .) {

13 $mbody . . .

14 };

15 ) . . .

16 }

17 }

The use of the repeated grouping pattern tells sweet.js to match zero or more
method declarations and then expand to code where each method is assigned to the
constructor function’s prototype.

ES2015 classes also support an optional inheritance pattern by extending the
prototype of a base object. The syntax for this feature is class Cat extends Animal.
The class macro now uses two rules, one to handle the extends case and one to handle
the normal case.

1 macro class {
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2 rule {

3 $name extends $base {

4 constructor ($params (,) . . .) { $body . . . }

5 $(

6 $mname ($mparams (,) . . .) { $mbody . . . }

7 ) . . .

8 }

9 } => {

10 function $name ($params (,) . . .) {

11 $body . . .

12 }

13 $name.prototype = Object.create($base.prototype);

14 $(

15 $name.prototype.$mname = function $mname($mparams (,) . . .) {

16 $mbody . . .

17 };

18 ) . . .

19 }

20

21 rule {

22 $name {

23 constructor ($params (,) . . .) { $body . . . }

24 $(

25 $mname ($mparams (,) . . .) { $mbody . . . }

26 ) . . .

27 }

28 } => {

29 // as before . . .

30 }

31 }

When a macro is invoked, the expander attempts to match each rule in the
macro’s definition in a top-down order. In this example, the class macro will first try to
match syntax that includes the extends literal and if that fails to match, it will attempt
the second rule. If the macro matched the extends rule, it would expand to code that
wires the prototype chain by using the built in function Object.create(), which creates
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a new object with its prototype set to the first argument (the optional second argument
of create sets initial property values for the new object and is not needed here).

The final feature of class we would like to implement is the super keyword,
which provides a reference to the extended object. Properly implementing this feature
requires some advanced features of sweet.js, so will be discussed later in this chapter.

2.2 Rest Rules

ES2015 also introduces quality-of-life syntax improvements to function dec-
larations. A function in JavaScript can be invoked with any number of arguments
irrespective of the number of parameters declared in the function definition. In ES5
and before the “extra” arguments are available in the arguments implicit parameter,
which is an “array-like” object1 that contains each argument. ES2015 addresses this
pattern by adding the rest . . . operator on function declarations that allows program-
mers to name both individual parameters and then the remaining array of the “rest” of
the arguments:

1 function foo(x, y, . . .args) {

2 args.shift();

3 }

To implement rest via a macro, we need to use two new features: let bound
macros and escape literals:

1 let function = macro {

2 rule {

3 $name ($[ . . .] $restName) {

4 $body . . .

5 }

6 } => {

7 function $name () {

8 var $restName = Array.prototype.slice.call(arguments);

9 $body . . .

10 }

11 }

1array-like in the sense that the object provides access to its elements via indexed array notation but
is missing many of the normal array methods.
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12 }

The normal macro declaration form (macro name { /* .. */ }) is recursive; it
binds the macro’s name in its template. This binding behavior is useful for implementing
recursive macro definitions but causes a problem when we want to extend the definition
of existing syntax forms like function, since using a normal macro declaration form
for the above function macro would result in an infinite expansion loop. Instead, we
can use the let binding form which does not bind the identifier function to the macro
definition in the template.

In addition, the rest ellipses . . . conflicts with the sweet.js repetition ellipses
so we need a way to match the syntax “ . . .” literally. The pattern $[ . . .] allows us to
literally match the rest ellipses.

2.3 Rest Case

Astute readers will note that the macro we have so far only handles the case
where the rest argument is the only parameter, but obviously the feature should allow
the definition of multiple named parameters along with the rest parameter.

To handle this case we need some additional power that rule macros do not
easily provide us. In particular, we need to know the number of non-rest parameters in
the declaration so that the rest parameter can contain only the left over arguments. To
be concrete, we want the expansion shown in Figure 2.2.

To get the number of parameters we can use case macros. Unlike rule macros,
the body of a case macro is JavaScript code that is evaluated at macro invocation time
and can manipulate and create new syntax. A case macro allows us to programmatically
inspect the number of parameter tokens and create the appropriate syntax.

Case macros look similar to rule macros with a few important differences.
First, the patterns also match the macro name instead of just the syntax that comes
after it. In our example, it is not necessary to bind the macro name so it can be ignored
with the wildcard _ pattern (which matches any token but does not bind it to a name).

Templates are now created with the #{ . . .} form. The #{ . . .} form creates an
array of syntax objects using any pattern bindings that are in scope (i.e., were matched
by the pattern).
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Figure 2.2: Rest Expansion

1 function foo(x, y, . . .args) {

2 // . . .

3 }

expands to ⇒
1 function foo(x, y) {

2 // drop the first two elements from arguments

3 var args = Array.prototype.slice.call(arguments, 2);

4 // . . .

5 }

A syntax object is the data representation that sweet.js uses to keep track of
tokens along with their lexical context (a lexical context tracks binding information
and is described in Chapter 5). For example, the syntax object representation of the
identifier foo looks something like:

1 {

2 token: {

3 // ‘3‘ is the token type of identifiers

4 type: 3,

5 value: "foo",

6 lineNumber: 1

7 },

8 context: {

9 // binding information . . .

10 }

11 }

The following functions create a syntax object for the appropriate kind of
token:

• makeValue(val, stx) – val can be a boolean, number, string, or null/undefined

• makeRegex(pattern, flags, stx) – pattern is the string representation of the
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regex pattern and flags is the string representation of the regex flags

• makeIdent(val, stx) – val is a string representing an identifier

• makePunc(val, stx) – val is a string representing a punctuation (e.g. =, ,, >, etc.)

• makeDelim(val, inner, stx) – val represents which delimiter to make and can be
either "()", "[]", or "{}" and inner is an array of syntax objects for all of the
tokens inside the delimiter.

The last stx argument to each of these function is a syntax object from which
the freshly created syntax object takes its lexical context. This syntax argument is
used to “bend” hygiene and I will discuss it a bit later. For now, the common pat-
tern is to use #{here} when using one of these syntax creation functions (e.g., in
makeValue(42, #{here})).

When using syntax object creation functions, it is convenient to refer to them
in #{} templates. To do this sweet.js provides the construct letstx, which binds syntax
objects to pattern variables:

With all that preamble out of the way, the case macro we need is the following:
1 let function = macro {

2 case {_

3 $name ($params (,) . . . $[ . . .] $restName) {

4 $body . . .

5 }

6 } => {

7 // find the number of parameters

8 var paramCount = #{$params . . .}.length;

9

10 // letstx creates bindings to syntax objects that

11 // can be useed in the following templates. Here we

12 // create a numeric literal syntax object for the

13 // the number of parameters and bind it to $index

14 letstx $index = [makeValue(paramCount, #{here})];

15

16 // return the syntax array generated by the following

17 // template. Note that $index is bound in the template

18 // the the numeric literal syntax object created above
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19 return #{

20 function $name ($params (,) . . .) {

21 var $restName = Array.prototype.slice.call(arguments, $index);

22 $body . . .

23 }

24 }

25 }

26 }

In this macro #{$params . . .} is an array where each element is a parameter
syntax object. By checking the length of this array we get the total number of pa-
rameters and then then use the number of parameters to create a new numeric literal
syntax object. Then in the template the length is used as the starting index when slicing
arguments.

2.4 Default Arguments

Default arguments are another addition in ES2015 that allow programmers
to specify the default value of parameters when they are not supplied during function
invocation.

1 function foo(x = 40 + 2, y = 100) {

2 // . . .

3 }

In order to properly implement default arguments as a macro, it is necessary
to match on the default initialization for each parameter. However, the initialization is
an undelimited expression (such as 40 + 2), which is difficult to properly match against
with the pattern language shown so far.

Sweet.js addresses this difficulty with pattern classes that specify the JavaScript
grammar production that a pattern variable should match against. Pattern classes
are attached to pattern variables with the syntax :<class>. For example, the pattern
$var:expr will match an expression and bind the resulting match to the pattern variable
$var.

With pattern classes we are now in a position to implement default arguments:
1 let function = macro {
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2 rule {

3 $name ( $($param = $init:expr) (,) . . . ) {

4 $body . . .

5 }

6 } => {

7 function $name ( $param (,) . . . ) {

8 $($param = $param !== undefined ? $param : $init;) . . .

9 $body . . .

10 }

11 }

12 }

The key idea of this macro is that when the function is invoked, each undefined
parameter is set to its default value.

2.5 Putting Together Functions

Up until now, while our ES2015 function extensions have illustrated the core
technique, they are not very robust macros. The default parameters extension does not
support normal parameters (every parameter must be in the form $param = $init:expr)
and attempting to combine the default parameters extension with the rest parameter
extension would lead to lots of repeated code. To address these difficulties we need a
way of separating out the essential concerns of each extension to combine them in a
clean way.

The first issue we need to handle is extending default parameters to deal with
both default and normal parameters in a separable way. The sweet.js feature that allows
us to do this separation is the invoke pattern class, which allows a macro to invoke
another macro during pattern matching. Essentially invoke inserts another macro into
the token stream allowing some of the pattern matching logic to be moved to the invoked
macro.

We can use invoke to move the parameter pattern matching logic into a
default_param macro:

1 macro default_param {

2 rule { $param = $init:expr } => { $param }
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3 rule { $param } => { $param }

4 }

5

6 let function = macro {

7 rule {

8 $name ( $p:invoke(default_param) (,) . . . ) {

9 $body . . .

10 }

11 } => {

12 function $name ($p (,) . . .) {

13 $body . . .

14 }

15 }

16 }

If a pattern class matches an in-scope macro, then an implicit invoke is per-
formed. This means that the function macro can be simplified to:

1 let function = macro {

2 rule {

3 $name ( $p:default_param (,) . . . ) {

4 $body . . .

5 }

6 } => {

7 function $name ($p (,) . . .) {

8 $body . . .

9 }

10 }

11 }

While this macro now separates out the pattern matching logic, we still need
a way to refer to both the parameter name and the initializer in the macro template.
Referencing the name and initializer is done via macroclass, a feature built on top of
invoke. Using macroclass a programmer can define patterns where each sub-pattern
can be referenced via concatenation. For example, the default parameter pattern can
be defined as:

1 macroclass default_param {
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2 pattern {

3 rule { $param = $init:expr }

4 }

5 }

Then a pattern $p:default_param can refer to the $param sub-pattern via
$p$param and $init via $p$init. A macroclass can define multiple patterns (matched
top down just like normal macros) and a pattern can set missing sub-patterns via with.
So, a default_param that matches both a default parameter and a normal parameter
can be defined as:

1 macroclass default_param {

2 pattern {

3 rule { $param = $init:expr }

4 }

5 pattern {

6 rule { $param }

7 with $init = #{undefined}

8 }

9 }

Here the normal parameter pattern sets the $init sub-pattern to the undefined

token. Now our function macro can use the sub-patterns of default_param to expand
to the appropriate parameter setting behavior (an expansion of a function with mixed
parameters is shown in Figure 2.3.):

1 let function = macro {

2 rule {

3 $name ( $p:default_param (,) . . . ) {

4 $body . . .

5 }

6 } => {

7 function $name ($p$param (,) . . .) {

8 $($p$param = $p$param !== undefined

9 ? $p$param

10 : $p$init;) . . .

11 $body . . .

12 }
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Figure 2.3: Standard and Default Parameters Expansion

1 function foo(x, y = 100 + 200) {

2 // . . .

3 }

expands to ⇒
1 function foo(x, y) {

2 x = x !== undefined ? x : undefined;

3 y = y !== undefined ? y : 100 + 200;

4 // . . .

5 }

13 }

14 }

Now that we have a robust implementation of default parameters that separates
the parameter matching we can more easily add rest arguments. As before, we need to
switch to using a case macro in order to count the number of parameters. In addition,
the rest argument is optional so we need a way of handling both function with and
without a rest argument. We can separate out the optional matching into an opt_rest

macro:
1 macro opt_rest {

2 rule { $[ . . .] $rest } => { $rest }

3 rule {} => {}

4 }

The opt_rest macro works by first attempting to match the pattern $[ . . .] $rest.
If this first case fails, the empty pattern is attempted. Since the empty pattern will al-
ways match, the opt_rest macro expands into an empty template.

Now it is straightforward to implement our function macro that supports both
default parameters and rest arguments.

1 let function = macro {

2 case {_
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3 $name ( $p:default_param (,) . . . $rest:opt_rest ) {

4 $body . . .

5 }

6 } => {

7 var restStx = #{};

8 var paramCount = #{$p$param . . .}.length;

9 letstx $index = [makeValue(paramCount, #{here})];

10 if (#{$rest}.length > 0) {

11 restStx = #{var $rest = Array.prototype.slice.call(arguments, $index);}

12 }

13 letstx $restStx = restStx;

14 return #{

15 function $name ($p$param (,) . . .) {

16 $restStx

17 $($p$param = $p$param !== undefined

18 ? $p$param

19 : $p$init;) . . .

20 $body . . .

21 }

22 }

23 }

24 }

The key idea is to set $restStx to the appropriate arguments manipulating
code only if $rest matched against a rest argument.

2.6 Arrow Functions

ES2015 arrow functions present sweet.js with an additional challenge to the
syntax extension we have covered so far. Arrow functions are a concise function expres-
sion definition form. For example, a simple add function can be defined as:

1 var add = (x, y) => x + y

2 // syntactic sugar for

3 // var add = function(x, y) { return x + y }
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The macros we have described so far are prefix macros: the macro identifier
appears before the syntax that it matches. This pattern mirrors most of the standard
JavaScript forms (e.g., function and if begin with an identifying keyword) and allows
a macro system to process macros left-to-right.

While prefix macros are sufficient for many syntax forms, other forms such as
ES2015 arrow functions require additional flexibility.

We can do this matching of syntax before a macro name with infix macros.
Defining an infix macro is similar to standard macro except we add the infix keyword
after each rule or case keyword and use the pipe operator | in the pattern to represent
where the macro name should appear (the pipe can be thought of as a cursor into the
token stream). When the macro name is encountered during macro expansion, patterns
to the left of the | are matched against syntax to the left of the macro name and to the
right respectively.

With infix macros we can handle all the possible cases of ES2015 arrow func-
tions with only four different rules:

1 macro => {

2 // (x, y) => { return x + y; }

3 rule infix { ( $params (,) . . . ) | { $body . . . } } => {

4 function ($params (,) . . .) {

5 $body . . .

6 }.bind(this)

7 }

8 // x => { return x; }

9 rule infix { $param | { $body . . . } } => {

10 function ($param) {

11 $body . . .

12 }.bind(this)

13 }

14 // (x, y) => x + y

15 rule infix { ( $params (,) . . . ) | $body:expr } => {

16 function ($params (,) . . .) {

17 return $body;

18 }.bind(this)

19 }
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20 // x => x + y

21 rule infix { $param | $body:expr } => {

22 function ($param ) {

23 return $body;

24 }.bind(this)

25 }

26 }

The use of .bind(this) is due to the fact that arrow functions in ES2015 do
not define a local binding to this. Instead this should resolve to the binding in the
arrow function’s surrounding scope. The ES5 bind method on functions allows us to
adjust the binding of this, which simulates a missing local definition of this inside
arrow functions.

Infix macros illustrate a guiding principle in the design of sweet.js—namely
the ability to build any of the syntax forms of JavaScript as a macro (including forms
introduced in ES2015 such as arrow functions).

2.7 Exponentiation

While no new operators are in ES2015, the exponentiation operator ** has
been proposed2 for inclusion in the next version of the standard (at the time of this
writing, ES2016), which makes the syntax e1 ** e2 sugar for the built-in JavaScript
function Math.pow(e1, e2).

Sweet.js supports these kinds of syntax forms with custom operators [Rafkind
and Flatt, 2012]. The custom operator definition of exponentiation is:

1 operator (**) 14 right { $base, $exp } => #{ Math.pow($base, $exp) }

Operators have precedence and associativity so our custom binary operator
definition set the precedence (14) and associativity (right associative) of exponentia-
tion3. Precedence in sweet.js is represented by a number where bigger numbers bind
more tightly. For example, by default addition (+) and subtraction (-) have a prece-
dence of 12 whereas multiplication (*) and division (/) have a precedence of 13 and thus

2https://github.com/rwaldron/exponentiation-operator
3We need to surround the operator name ** with parentheses because the JavaScript lexer considers

** to be two separate * tokens. Surrounding a macro or operator name with parentheses in a declaration
tells sweet.js to create a multi-token macro.
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Figure 2.4: Exponentiation Expansion

1 y + x ** 10 ** 100 - z

expands to ⇒
1 y + Math.pow(x, Math.pow(10, 100)) - z;

bind more tightly.
Because custom operators allow us to specify the precedence and associativity

the expression in Figure 2.4 expands correctly.
Custom operators in sweet.js are similar to macros in the sense that they match

syntax and expand into new syntax, they differ in that they cannot match on arbitrary
patterns. Rather, custom operators match only expressions that appear to the left and
right of the operator (or just a single expression in the case of unary operators). This
restriction allows sweet.js to properly handle precedence and associativity.

2.8 Bending Hygiene

Bending hygiene is done by stealing the lexical context from syntax objects in
the “right place”. To clarify, consider aif the anaphoric if macro that binds its condition
to the identifier it in the body.

1 var it = "foo";

2 long.obj.path = [1, 2, 3];

3 aif (long.obj.path) {

4 console.log(it);

5 }

6 // logs: [1, 2, 3]

This is a violation of hygiene because normally it should be bound to the
surrounding environment ("foo" in the example above) but aif must capture it. To
capture it inside aif, we can create an it binding in the macro that has the lexical
context associated with the surrounding environment. The lexical context we want is
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actually found on the aif macro name itself. So we just need to create a new it binding
using the lexical context of aif:

1 macro aif {

2 case {

3 // bind the macro name to ‘$aif_name‘

4 $aif_name

5 ($cond . . .) {$body . . .}

6 } => {

7 // make a new ‘it‘ identifier using the lexical context

8 // from ‘$aif_name‘

9 var it = makeIdent("it", #{$aif_name});

10 letstx $it = [it];

11 return #{

12 // bind ‘$cond‘ to ‘$it‘

13 (function ($it) {

14 if ($cond . . .) {

15 // all ‘it‘ identifiers in ‘$body‘ will now

16 // be bound to ‘$it‘

17 $body . . .

18 }

19 })($cond . . .);

20 }

21 }

22 }

The bending described in the section is classic Scheme-style hygiene bending.
This technique has a number of limitations, especially when attempting to compose two
macros that both bend hygiene. The Racket community has introduced an alternative
technique called syntax parameters [Barzilay et al., 2011] that addresses a number of
the problems with traditional hygiene bending.

2.9 Faithful Class

The class form we implemented earlier in this chapter was not fully faithful
to the ES2015 standard because it was missing the super keyword that allows the
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constructor or a method access to the base class. We have now introduced enough
sweet.js features to properly implement super.

1 class Bar extends Foo {

2 constructor() {

3 // refers to the base object’s constructor

4 super("yeah");

5 }

6 foo() {

7 // refers to the base object’s prototype

8 super["baz"]

9 }

10 bar() {

11 // refers to the base object’s prototype

12 super.baz;

13 }

14 }

First off, we can separate out the method matching into a macroclass definition
to make our main class macro more readable.

1 macroclass class_method {

2 rule {

3 $name ($args . . .) {

4 $body . . .

5 }

6 }

7 }

The key to super is that it needs to refer to the prototype of the extending
object. For example, in a constructor of a class Foo, super("foo") should be equivalent
to:

1 Object.getPrototype(Foo.prototype)

2 .constructor

3 .call(this, "foo")

So, during expansion super needs to refer to its enclosing class name (Foo). A
straightforward implementation technique here is to use some hygiene bending. We do
this by defining a super macro whose name is hygienically bent to the same scope as
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the class definition (so all reference to super in the class definition are captured). Thus,
each expansion of class includes a specialized declaration of super that knows the name
of the enclosing class.

1 macro class {

2 case {$cname

3 $name extends $base {

4 constructor ($params . . .) { $body . . . }

5

6 $m:class_method . . .

7 }

8 } => {

9 letstx $super = [makeIdent("super", #{$cname})];

10 return #{

11 macro $super {

12 rule { ($[$args . . .]) } => {

13 Object.getPrototypeOf($name.prototype)

14 .constructor

15 .call(this, $[$args . . .])

16 }

17 rule { [$[$args . . .]] } => {

18 Object.getPrototypeOf($name.prototype)[$[$args . . .]]

19 }

20 rule { . $[$id] } => {

21 Object.getPrototypeOf($name.prototype)[to_str $[$id]]

22 }

23 }

24 function $name($params . . .) {

25 $body . . .

26 }

27 $name.prototype = Object.create($base.prototype);

28 $(

29 $name.prototype.$m$name = function($m$args . . .) {

30 $m$body . . .

31 }

32 ) . . .
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33 }

34 }

35 }

We need a little utility macro to_str to help out with super that just converts
an identifier syntax object (e.g., foo) to a string literal (λ eg,“foo”).

1 macro to_str {

2 case {_ $x } => {

3 letstx $str = [makeValue(unwrapSyntax(#{$x}), #{here})];

4 return #{$str};

5 }

6 }

2.10 Growing JavaScript

The macros shown in this section demonstrate one of the primary goals of
sweet.js, namely giving programmers the ability to seamlessly grow their own language.
While it is useful for JavaScript implementations to support these ES2015 language
features, macros allow programmers to begin using these features without waiting for
native support. Macros also enable grassroots language design whereby programmers
can use macros to explore different syntax features and provide real-world feedback for
future versions of JavaScript.
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Chapter 3

Reading JavaScript

Parsers give structure to unstructured source code. In a system without macros
this structuring is usually accomplished by a lexer (which converts a character stream to
a token stream) and a parser (which converts the token stream into an AST according
to a context-free grammar). A system with macros must implement a macro expander
that sits between the lexer and parser. Some macros systems, such as the C preprocessor
[Harbison and Steele, 1984], work over just the token stream. However, to implement
truly expressive Scheme-like macros that can manipulate groups of unparsed tokens, it
is useful to structure the token stream via a reader, which performs delimiter matching
and enables macros to manipulate delimiter-grouped tokens.

As mentioned in the introduction, the design of a correct reader for JavaScript
is surprisingly subtle because of ambiguities between lexing regular expression literals
and the divide operator. This disambiguation is critical to the correct implementation
of read because delimiters can appear inside of a regular expression literal. If the
reader fails to distinguish between a regular expression/divide operator, it can result in
incorrectly matched delimiters.

1 function makeRegex() {

2 // results in a parse error if the

3 // first / is incorrectly read as divide

4 return /)/;

5 }

A key novelty in sweet.js is the design and implementation of a reader that
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Figure 3.1: AST for Simplified JavaScript

e ∈ AST ::= x | /r/ | {x: e} | (e) | e.x | e(e)
| e / e | e + e | e = e | {e} | x:e | if (e) e

| return | return e

| function x (x) {e} | e e
r ::= x | ( | ) | { | }

correctly distinguishes between regular expression literals and the divide operator for full
ES5 JavaScript1. For clarity of presentation, this chapter describes the implementation
of read for the subset of JavaScript shown in Figure 3.1. This subset is similar to the
full ES5 grammar but with non-essential productions elided (for example, rather than
handle each operator, this subset only includes + and /). This subset keeps the essential
complexity of the full version of read while allowing the presentation of the technique
to remain as clear as possible.

3.1 Read Formalism

For the formalism of given here, the read algorithm will take a Lexeme se-
quence. Lexemes are the output of a very simple lexer, which is not defined here. This
lexer does not receive feedback from the parser like the ES5 lexer does, so it does not
distinguish between regular expressions and the divide operator. Rather it simply lexes
slashes into the ambiguous / lexeme. Lexemes also include keywords, puncutators, the
(unmatched) delimiters, and variable identifiers.

1Our implementation also has initial support for code written in the upcoming ES2015 version of
JavaScript.
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Punctuator ::= / | + | : | ; | = | .

Keyword ::= return | function | if

k ∈ Lexeme ::= x | Punctuator | Keyword
| { | } | ( | )

x, y ∈ Variable
L ∈ Lexeme∗

The job of read is then to produce a correct Token sequence from a Lexeme
sequence. Tokens include regular expression literals /r/, where r is a regular expres-
sion pattern (modeled as either a variable or one of the delimiters). This presentation
simplifies regular expression bodies to just a variable and the individual delimiters,
which captures the essential problems of parsing regular expressions. Tokens also in-
clude fully matched delimiters with nested token sequences (T) and {T} rather than
individual delimiters (token delimiters with their nested token sequences are written
with an underline to distinguish them from individual lexeme delimiters).

t ∈ Token ::= x | Punctuator | Keyword
| /r/ | (T) | {T}

r ∈ RegexPat ::= x | { | } | ( | )

T, P ∈ Token∗

Each lexeme and token also carries its line number from the original source
string. Line numbers are needed because there are edge cases in the JavaScript grammar
where newlines influence parsing. For example, the following function returns the object
literal {x: y} as expected.

1 function f(y) {

2 return { x: y }

3 }

However, adding a newline causes this function to return undefined, because
the grammar calls for an implicit semicolon to be inserted after the return keyword.

1 function g(y) {

2 return

3 { x: y }

4 }
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For clarity of presentation, line numbers are left implicit unless required, in
which case we can use the notation {l where l is a line number.

A token sequence is written by separating elements with a dot so the source
string “foo(/)/)” is lexed into a sequence of six lexemes foo ·( ·/ ·) ·/ ·). The equivalent
token sequence is: foo · ( · /)/ · ).

3.2 Read Algorithm

The key idea of read is to maintain a prefix of already read tokens. When read

comes to a slash and needs to decide if it should consume the slash as a divide token or
the start of a regular expression literal, it consults the prefix. Looking back at most five
tokens in the prefix is sufficient to disambiguate slash. Note that this may correspond
to looking back an unbounded distance in the original token sequence.

Some of the cases of read are relatively obvious. For example, if the token just
read was one of the binary operators (e.g., the + in f · + · / · } · /) the slash will always
be the start of a regular expression literal.

Other cases require additional context to disambiguate. For example, if the
previous token was a parenthesis (e.g., foo · ( · x · ) · / · y ) then slash will be the divide
operator, unless the token tree before the parentheses was the keyword if, in which
case it is actually the start of a regular expression (since single statement if bodies do
not require braces).

1 if (x) /}/ // regex

One of the most complicated cases is a slash after curly braces. Part of the
complication here is that curly braces can either indicate an object literal (in which
case the slash should be a divide) or a block (in which case the slash should be a
regular expression), but even more problematic is that both object literals and blocks
with labeled statements can nest. For example, in the following code snippet the outer
curly brace is a block with a labeled statement x, which is another block with a labeled
statement y followed by a regular expression literal.

1 {

2 x:{y: z} /}/ // regex

3 }
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But if we change the code slightly, the outer curly braces become an object
literal and x is a property so the inner curly braces are also an object literal and thus
the slash is a divide operator.

1 o = {

2 x:{y: z} /x/g // divide

3 }

While it is unlikely that a programmer would attempt to intentionally perform
division on an object literal, it is not a parse error. In fact, this is not even a runtime
error since JavaScript will implicitly convert the object to a number (technically NaN)
and then perform the division (yielding NaN).

The reader handles these cases by checking if the prefix of a curly brace forces
the curly to be an object literal or a statement block and then setting a boolean flag to
be used while reading the tokens inside of the braces.

Based on this discussion, the reader is implemented as a function that takes
a sequence of lexemes, a prefix of previously read tokens, a boolean indicating if the
lexeme sequence currently being read is inside an object literal, and returns a sequence
of tokens.

read : Lexeme∗ → Token∗ → Bool→ Token∗

The implementation of read shown in Figure 3.3 uses two disjoint sets, Divide-
Prefix and RegexPrefix defined in Figure 3.4, that determine if a slash should be either
a divide or the start of a regular expression. These sets are parametrized by a boolean
indicating if the prefix is inside an object literal or a block statement. The read function
also includes an auxiliary function, isExprPrefix defined in Figure 3.2, that is used to
determine if the prefix for a curly brace indicates that the braces should be part of an
expression (i.e., the braces are an object literal) or if they should be a block statement.

Note that read is not defined over all inputs; the undefined inputs of read

correspond to parse errors in the grammar. For example, the input x = /x is a parse
error since the / must be a regular expression literal but it does not have a closing /.

Interestingly, the isExprPrefix function must also be used when the prefix
before a slash contains a function definition. This is because there are two kinds of
function definitions in JavaScript, function expressions and function declarations, and
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these also affect how slash is read. For example, a slash following a function declaration
is always the start of a regular expression:

1 function f() {}

2 /}/ // regex

However, a slash following a function expression is a divide operator:
1 x = function f() { }

2 /y/g // divide

As in the object literal case, it is unlikely that a programmer would attempt
to intentionally divide a function expression but it is not an error to do so.

Figure 3.2: Helper Function for read

isExprPrefix : Token∗ → Bool→ Int→ Bool
isExprPrefix(ε, true, l) = true
isExprPrefix(P · /, b, l) = true
isExprPrefix(P · +, b, l) = true
isExprPrefix(P · =, b, l) = true
isExprPrefix(P · :, b, l) = b

isExprPrefix(P · t · returnl, b, l′) = false if l 6= l′ and t 6= .

isExprPrefix(P · t · returnl, b, l′) = true if l = l′ or t = .

isExprPrefix(P, b, l) = false if other cases do not match

3.3 Proving Read

To show that our read algorithm correctly distinguishes divide operations from
regular expression literals, it is necessary to show that a parser defined over lexemes
produces the same AST as a parser defined over the tokens generated by read.

The grammar for lexemes is defined in Figures 3.5 and 3.6, and generates ASTs
in the abstract syntax shown in Figure 3.1. I use the notation L = Programe to mean

35



Figure 3.3: Read Algorithm

read : Lexeme∗ → Token∗ → Bool→ Token∗

read(/ · L, P, b) = / · read(L, P · /, b)
if P ∈ DividePrefixb

read(/ · r · / · L, P, b) = /r/ · read(L, P · /r/, b)
if P ∈ RegexPrefixb

read(( · L · ) · L′, P, b) = (T) · read(L′, P · (T), b)
if L contains no unmatched ) if T = read(L, ε, true)

read({l · L · } · L′, P, b) = {T}l · read(L′, P · {T}l, b)
if L contains no unmatched }

T = read(L, ε, isExprPrefix(P, b, l))
read(k · L, P, b) = k · read(L, P · k, b)
if k 6∈ {/, (, {}

read(ε, P, b) = ε
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Figure 3.4: Read Prefix Helpers

RegexPrefixb ::= ε

| P · t if t ∈ Punctuator
| P · t · t′ if t′ ∈ Keyword and t 6= .

| P · t · if · (T) if t 6= .

| P · functionl · x · (T) · {T ′} if isExprPrefix(P, b, l) = false
| P · {T}l if isExprPrefix(P, b, l) = false

DividePrefixb ::= P · x
| P · /r/
| P · t · t′ · (T) if (t′ 6= if) or (t′ = if and t = .)
| P · {T}l if isExprPrefix(P, b, l) = true
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that L is recognized by a derivation of Program producing the AST e.
Note that the grammar presented here is a simplified version of the grammar

specified in the ECMAScript 5.1 standard [International, 2011] and many nonterminal
names are shortened versions of nonterminals in the standard. It is mostly straightfor-
ward to extend the algorithm presented here to the full sweet.js implementation for ES5
JavaScript.

In addition to the Program parser just described, there also is a parser Program′

that works over tokens. The rules of the two parsers are identical, except the rules with
delimiters and regular expression literals change as follows:

PrimaryExpr/r/ ::= / · r · /
PrimaryExpr′/r/ ::= /r/

PrimaryExpr(e) ::= ( ·AssignExpre · )
PrimaryExpr′(e) ::= (AssignExpr′e)

To prove that read is correct, it is necessary to show that the following two
parsing strategies give identical behavior:

• The traditional parsing strategy takes a lexeme sequence L and parses L into an
AST e using the traditional parser Programe.

• The second parsing strategy first reads L into a token sequence via read(L, ε, false),
and then parses this token sequence into an AST e via Program′e.

Theorem 1 (Parse Equivalence).
For all e ∈ AST, L ∈ Lexeme:
If L = Programe then read(L, ε, false) = Program’e

Proof. The proof proceeds by induction on the derivation of Programe to show that
parse equivalence holds between all corresponding nonterminals in the two grammars.
In particular, parse equivalence holds by Lemma 1 shown in the Appendix.
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Figure 3.5: Simplified ES5 Grammar Pt. 1

PrimaryExprx ::= x

PrimaryExpr/r/ ::= / · r · /
PrimaryExpr{x:e} ::= { · x · : ·AssignExpre · }
PrimaryExpr(e) ::= ( ·AssignExpre · )

MemberExpre ::= PrimaryExpre

MemberExpre ::= Functione

MemberExpre.x ::= MemberExpre · . · x
CallExpre(e′) ::= MemberExpre · ( ·AssignExpre′ · )
CallExpre(e′) ::= CallExpre · ( ·AssignExpre′ · )
CallExpre.x ::= CallExpre . x

LHSExpre ::= MemberExpre

LHSExpre ::= CallExpre

BinaryExpre ::= LHSExpre

BinaryExpre / e′ ::= BinaryExpre · / · BinaryExpre′

BinaryExpre + e′ ::= BinaryExpre · + · BinaryExpre′

AssignExpre ::= BinaryExpre

AssignExpre = e′ ::= LHSExpre · = ·AssignExpre′
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Figure 3.6: Simplified ES5 Grammar Pt. 2

StmtListe ::= Stmte
StmtListe e′ ::= StmtListe · Stmte′

Stmt{e} ::= { · StmtListe · }
Stmtx: e ::= x · : · Stmte
Stmte ::= AssignExpre · ; where lookahead 6= { or function

Stmtif (e) e′ ::= if · ( ·AssignExpre · ) · Stmte′

Stmtreturn ::= return

Stmtreturn e ::= return · [no line terminator here] AssignExpre · ;

Functionfunction x (x′) {e} ::= function · x · ( · x′ · ) · { · SourceElementse · }

SourceElemente ::= Stmte
SourceElemente ::= Functione

SourceElementse ::= SourceElemente
SourceElementse e′ ::= SourceElementse · SourceElemente′

Programe ::= SourceElementse
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Chapter 4

Expansion in JavaScript

In Scheme, expand is the core function of the macro system responsible for
taking the s-expressions generated by read and discovering, loading, and expanding
any macros in the code. The Scheme compiler pipeline looks something like:

read
Sexp−−−→ expand

Sexp−−−→ parse AST−−−→ eval

In a language with s-expressions like Scheme, this pipeline is sufficient to im-
plement very expressive macro systems [Matthew Flatt and PLT, 2010]. Fully delimited
s-expressions play a key role in enabling the expressive power of this pipeline.

However in a language like JavaScript, since most of the syntax forms are only
partially delimited, it is necessary to provide additional structure during expansion that
allows macros to manipulate undelimited or partially delimited groups of tokens.

To clarify, consider the expansion of simple let macro in Figure 4.1. Like many
syntactic forms in JavaScript, the initialization expression of the let declaration is an
undelimited sequence of tokens. An expressive macro system necessitates macros that
can match and manipulate patterns such as an expression. In sweet.js, the ability to
match on these undelimited sequences is provided via the :expr pattern.

Sweet.js groups tokens by transforming a token tree into a term through a
technique pioneered by the Honu language called enforestation [Rafkind, 2013, Rafkind
and Flatt, 2012]. Enforestation works by progressively recognizing and grouping (poten-
tially undelimited) syntax forms (e.g., literals, identifiers, expressions, and statements)
during expansion. Essentially, enforestation delimits undelimited syntax.
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Figure 4.1: Let Expansion

1 macro let {

2 rule { $id = $init:expr } => {

3 var $id = $init

4 }

5 }

6 let x = 40 + 2;

expands to ⇒
1 var x = 40 + 2;

A term is a kind of proto-AST that represents a partial parse of the program.
As the expander passes through the token trees, it creates terms that contain unex-
panded sub-trees that will be expanded once all macro definitions have been discovered
in the current scope.

For an example of how enforestation progresses, consider the following use of
the let macro:

1 macro let {

2 rule { $id = $init:expr } => {

3 var $id = $init

4 }

5 }

6 function foo(x) {

7 let y = 40 + 2;

8 return x + y;

9 }

10 foo(100);

Enforestation begins by making a first pass through the top-level scope that
loads the let macro into the macro environment and converts the function declaration
into a term (here I use angle brackets to denote the term data structure). Notice that
the body of the function is kept unenforested.
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1 <fn: foo,

2 args: (x),

3 body: {

4 let y = 40 + 2;

5 return x + y;

6 }>

7 foo(100);

Next, a term is created for the function call.
1 <fn: foo,

2 params: (x),

3 body: {

4 let y = 40 + 2;

5 return x + y;

6 }>

7 <call: foo, args: (100)>

On the second pass through the top-level scope, the expander descends into
the function body. The use of the let macro is expanded and the var and return term
are created.

1 <fn: foo,

2 params: (x),

3 body: {

4 <var: x, initializer: <op: +, left: 40, right: 2>

5 <return: <op: +, left: x right: y>

6 }>

7 <call: foo, args: (100)>

4.1 Expansion with Infix

In a traditional macros system like Scheme the macro name occurs before the
syntax it matches. For example, if m has been defined as a macro then an invocation like
(m foo bar baz) the m macro transformer will be invoked with the entire s-expression
(m foo bar baz). A macro transformer in Scheme thus has something like the type
Sexp→ Sexp.

Sweet.js diverges from the Scheme approach in two ways. First, since there
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are no s-expressions that delimit the extent of a macro invocation, macros are invoked
with all of the tokens following the macro name; a macro can match and manipulate
as many or as few tokens as it wants, up to the next closing delimiter. Second, macros
are also invoked with all of the tokens preceding the macro name (again up to the
nearest delimiter); providing the preceding tokens to the syntax transformer allows us
to implement infix macros.

So the most obvious type for a transformer in sweet.js would be:

(Token∗,Token∗)→ (Token∗,Token∗)

Here, the transformer is given two arguments, the first for the sequence of
tokens that precede the macro name and the second with the sequence of tokens that
follow. The transformer could then consume from either end as needed, yielding new
preceding and following tokens.

However, a naive implementation of this transformer type will lead to brittle
edge cases. For example:

1 bar(x) => x

Here the => macro is juxtaposed next to a function call, which we did not
intend to be valid syntax. The naive expansion results in unparsable code:

1 bar function(x) { return x; }

In more subtle cases, a naive expansion might result in code that actually
parses but has incorrect semantics, leading to a debugging nightmare.

The key problem here is that the term structure already discovered by the
expander is violated by matching only part of the tokens contained within the term. To
address this problem the macro actually takes the terms previously enforested rather
than tokens. So the actual type is:

(Term∗,Token∗)→ (Term∗,Token∗)

The transformer can match on and modify both the prefix of terms and the
tokens following the macro identifier.

So now in our running example:
1 bar(x) => x
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is first enforested to:
1 <call: bar, args: (x)> => x

So now the => transformer just sees a call term in its prefix argument and
correctly fails the match.

4.2 Expansion Formalized

To formalize these intuitions, I now consider a small JavaScript-like language
that contains just the bare minimum to demonstrate how expansion and enforestation
works. The grammar of this language is as follows:

e ::= stmt | expr
stmt ::= var x = expr | if (expr) {e∗}
expr ::= x | n | expr op expr | expr (expr) | function x (x) {e∗}
op ::= + | − | ∗ | / | . . .
AST ::= e∗

Like JavaScript, our language distinguishes between statements and expres-
sions. Statements include variable declarations (var x = expr) and conditional state-
ments (if (expr) {e∗})1. Expressions can be variables x, numbers n, binary operators
expr op expr, function calls expr (expr), and function declarations function x (x) {e∗}.
For simplicity, functions only accept a single argument.

The AST of a program is then a sequence of statements and expressions. Also
like JavaScript, our language does not require semicolons to terminate lines; in fact, our
simplified model does not include any semicolons at all so the following example would
be recognized as a variable declaration followed by a binary expression:

1 var x = 2 + 2

2 x * 100

While this language is not terribly useful to program in, it does demonstrate
the key syntactic forms that make expansion complex. In particular, it includes flat

1missing from our simplified language are some JavaScript features such as loops and switch
statements
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Figure 4.2: Grammar for Enforest

x, name ∈ Variable Variable
t ∈ Token ::= x | n | bop | (S) | {S} Token Tree
s ∈ Syntax ::= tC Syntax Object

id ∈ Identifier ::= xC Identifiers
C ∈ Scopeset ::= ∅ Scopeset

m ::= ExprTerm | StmtTerm Term
ExprTerm ::= id Identifier

n Numeric Literal
m op m Binary Operator
m (S) Call
function id (S) {S} Function Declaration

StmtTerm ::= var id = m Variable Declaration
if (S) {S} If Statement
macro id {S} Macro Declaration

S ::= s∗ Syntax Sequence
M ::= m∗ Term Sequence
a ::= left | right Associativity

binary ::= + | − | ∗ | / | . . .
bop ::= binarya,n
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Figure 4.3: Expansion Environment

E ∈ Env ::= Name→p Transform

Transform ::= PrimTrans | MacroTrans
PrimTrans ::= VarDecl | FunDecl | MacroDecl | IfStmt

MacroTrans ::= (Match,Trans)

Match ::= (Term∗,Syntax∗)→ (Subst,Term∗,Syntax∗)
Trans ::= Subst→ Syntax∗

Subst ::= Variable→p Syntax∗

binding forms (variable declarations), nested binding forms (function declarations), and
operators.

The data types used for expansion, shown in Figure 4.2, are tokens (t), syntax
objects (s, a sequence of which is written S), and terms (m, a sequence of which is
written M).

Tokens are similar to what we saw in Chapter 3 and include variabls x, numeric
literals n, binary operators bop, and two delimiter tokens with subtrees, parentheses (S)

and braces {S}, that nest a syntax sequence (square brackets are omitted here since
this minimal language does not include array literals or other syntax forms that would
require them).

Syntax objects are tokens with a scopeset (C). Scopesets are used to keep track
of binding information for the hygiene algorithm. This chapter describes a non-hygienic
version of expansion and so all scopesets are just the empty set. Chapter 5 expands this
formalism with hygiene.

In other contexts the words “variable”, “name”, and “identifier” are roughly
interchangeable. Here, these concepts are kept separate. A variable (x) and a
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name (name) are both elements of the same set and represent tokens such as foo or
myFunctionName42, however variables appear in the source program while names are used
to represent bindings for hygiene. Since this chapter does not address hygiene yet, no
fresh names are generated in the formalism presented here; Chapter 5 will introduce a
distinction between variables and names. An identifier is a variable syntax object (xC).

Terms are a kind of proto-AST in the sense that while terms contain the same
productions as the AST defined earlier, terms can contain unexpanded syntax sequences
as their subtrees. In this way a term represents a partially parsed program. This partial
parse is necessary because expansion requires multiple passes through a given scope; the
first pass will create terms for each form in the scope while the second pass recurses
into sub-terms.

Simplifying a little bit, the process of expanding macros will look something
like this:

read
Syntax∗−−−−−→ expand Term∗−−−−→ parse AST−−−→ eval

While this gets intuitively at what is going on, expand is broken up into a
multi-step process since we need to perform multiple passes:

Syntax∗−−−−−→ expandTokens Term∗−−−−→ expandTerms Term∗−−−−→

The high-level intuition for these functions is that expandTokens is responsible
for recognizing the basic term forms (via enforestation) and installing macro definitions
into the compile-time environment while expandTerms is responsible for traversing into
nested term structures and dealing with some hygiene issues (e.g., the parameter bind-
ings in functions). Basically, expandTokens performs the first pass through a scope and
expandTerms performs the second pass.

Two passes allows macro invocations to appear in nested structures prior to
their (lexical) declarations. For example, in the following snippet the id macro appears
inside the foo function before its definition.

1 function foo() {

2 id 42

3 }
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4 macro id {

5 rule { $x } => { $x }

6 }

In the first pass over this code, expandTokens will load the macro definition
into the compile-time environment without traversing into the function body of foo.
On the second pass expandTerms can traverse into foo and expand the id macro.

Expansion works over an environment, defined in Figure 4.3, that maps names
to transforms. A transform represents the meaning of a binding and is either a primitive
transform such as FunDecl (meaning the binding should be interpreted as the built-in
function form) or a macro transform. For the purposes of this formalism, a macro
transform is modeled as a pair of match and trans functions that perform pattern
matching and transcription respectively. I describe macro transformers more in section
4.3.

The environment is initialized with the built-in keywords mapped to their
respective primitive transforms (e.g., E(var) = VarDecl), which may seem excessive
but will become important when hygiene is introduced in Chapter 5.

Expansion uses the resolve function defined in Figure 4.5 to determine the
name an identifier is bound to. When hygiene is introduced in Chapter 5 resolve will
be a key function, but here it simply strips the scopeset from an identifier.

4.3 Expanding Tokens

Expansion begins, appropriately enough, with the expand function (Figure 4.4),
which simply stitches together expandTokens and expandTerms. The expandTokens func-
tion works over a prefix of previously encountered terms (retaining this prefix is a
divergence from other macro expansion techniques and allows us to implement infix
macros) along with the remaining syntax objects to process and a compile-time envi-
ronment (which stores macro definitions). The expand function calls expandTokens with
an empty prefix and environment along with the tokens tree sequence to expand. The
resulting pair of terms and the modified environment are then fed into expandTerms.

The key idea of expandTokens is that it uses →∗E,n, the reflexive transitive
closure of the enforest relation →E,n defined in Figure 4.6, to enforest the next term in
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Figure 4.4: Expand Function

expand : Syntax∗ → Term∗

expand(S) = let (M,E) = expandTokens(ε, S, ∅)
in expandTerms(M,E)

expandTokens : (Term∗,Syntax∗,Env)→ (Term∗,Env)
expandTokens(M, ε,E) = (reverse(M), E)
expandTokens(M,S,E) = expandTokens(macro id {S1} ·M ′, S′, E′)

if M, ⊥, S →∗E,0 M
′, macro id {S1}, S′

E′ = E[id := loadMacro(S1)]
expandTokens(M,S,E) = expandTokens(m ·M ′, S′, E)

if M, ⊥, S →∗E,0 M
′, m, S′

the token sequence. Enforestation works by building the longest possible term from the
tokens. For example, running enforestation over the tokens 2 ·+ ·2 ·10 ·- ·5 will produce
the term 2 + 2 followed by the remaining tokens 10 · - · 5.

If the enforested term is a macro definition, then it is added to the environ-
ment. Here loading of a macro is modeled by the primitive loadMacro that returns
a pair of a matcher function and a transformer function (match, trans). The matcher
function models pattern matching by taking the prefix terms and remaining syntax
objects and returns a substitution environment match : (Term∗,Token∗) → Subst. A
substitution environment maps pattern variables to a sequence of syntax objects for
use in the transformer which takes the substitution environment and returns a syntax
object sequence trans : Subst→ Token∗.

In the implementation of sweet.js, a macro definition is actually compiled to a
JavaScript function. For the purposes of formalization considered here, the loadMacro

primitive is sufficient to capture the essential complexity of macro definitions, namely
manipulating sequences of terms and tokens.
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Figure 4.5: Resolve Function

resolve : Identifier→ Name
resolve(xC) = x

Once enforested the term is added to the prefix and expansion continues. Once
all of the tokens are enforested, the prefix is reversed and returned along with the
environment.

4.4 Enforestation

Enforestation is the key piece of expansion that both performs macro expansion
and delimits implicitly delimited syntax forms. Each step of enforestation is defined by
the relation →E,n (see Figure 4.6), which relates a triple of the already expanded terms
(for use in infix macros), the term that enforest is currently working on (or ⊥ meaning
that the term has not been started yet), and the remaining syntax that has not been
enforested yet. The relation is parameterized by E, the compile-time environment, and
a number n, that represents the current operator precedence level.

Term⊥ = {⊥} ∪ Term

(→E,n) ⊆ (Term∗,Term⊥,Syntax∗)× (Term∗,Term⊥,Syntax∗)

The basic idea of enforestation is to consume as many syntax objects from the
syntax sequence as possible to construct a term.

Beginning from ⊥, if the first syntax object in the syntax sequence is an identi-
fier or a numeric literal, enforest steps to an identifier or numeric literal term respectively.

In the cases where enforest has stepped to an identifier, the relation must
check the meaning of each binding in the compile-time environment E. For example,
the rule that handles function declaration terms checks that the identifier idfun is bound

51



Figure 4.6: Enforest Function

M, ⊥, id · S →E,n M, id, S
M, ⊥, nC

1 · S →E,n M, n1, S

M, id, S →E,n M ′, ⊥, Sres · S′

if (match, trans) = E(resolve(id))
(θ,M ′, S′) = match(M,S)

Sres = trans(θ)
M, idvar, id · = · S →E,n M, var id m, S′

if VarDecl = E(resolve(idvar))
ε, ⊥, S →∗E,0 ε, m, S

′

m ∈ ExprTerm
M, idfun, id1 · (id2) · {S1} · S2 →E,n M, function id1 (id2) {S1}, S2

if FunDecl = E(resolve(idfun))
M, idif, (S1) · {S2} · S3 →E,n M, if (S1) {S2}, S3

if IfStmt = E(resolve(idif))
M, idmac, id · {S1} · S2 →E,n M, macro id {S1}, S2

if MacroDecl = E(resolve(idmac))
M, m, (S) · S′ →E,n M, m (S), S′

if m ∈ ExprTerm
M, m1, bopa,nop · S →E,n M, m1 bop m2, S

′

if nop >a n

ε, ⊥, S →∗E,nop ε, m2, S
′

m1 ∈ ExprTerm
m2 ∈ ExprTerm
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to FunDecl transform. The rules for function declarations, if statements, and macro
declarations are all similar since each simply step to their respective term after checking
the compile-time environment for their primitive transforms. Note that their bodies are
left as syntax sequences. This allows expandTokens to first discover and load all macro
definitions in a given scope.

If the current term is an identifier that maps to a macro transform in the
environment, then the macro is invoked by pulling the (match, trans) pair out of the
environment. The prefix terms M and remaining syntax objects S are passed to match
resulting in a substitution θ, potentially modified prefix M ′, and the remaining syntax
sequence S′. Then trans is invoked with the substitution resulting in a syntax sequence
Sres.

Variable declarations work by enforesting the initializer. The syntax sequence
following the = token is enforested under an empty prefix (effectively the initializer is
surrounded by an implicit delimiter). The initializer term must be an expression so, for
example, var x = var y = 42 would get stuck since var y = 42 is a statement.

There are two cases to consider when a term is followed by a binary operator.
The first case is where the precedence of the binary operator nop is greater than the
current precedence n of the enforestation context. In this case, the syntax to the right
of the operator is run through the enforestation relation at the operator’s precedence
level nop until a new expression m2 is built.

Associativity is handled by dispatching to the appropriately parameterized
ordering operator:

n1 <left n2
def= n1 ≤ n2

n1 <right n2
def= n1 < n2

The other case, where the operator’s precedence level is less than the context’s
precedence, is implicitly handled by enforestation. A lower operator precedence level
simply means that enforestation at the current precedence level is finished and enforest
can stop stepping.

For example, consider the enforestation steps of 1 * 2 + 3:
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ε, ⊥, 1 · *left,13 · 2 · +left,12 · 3
→∅,0
ε, 1, *left,13 · 2 · +left,12 · 3

Since the precedence level of * (13) is greater than the context precedence (0),
enforestation is run over the remaining syntax giving the following steps:

ε, ⊥, 2 · +left,12 · 3
→∅,13

ε, 2, +left,12 · 3

Since the context’s precedence (13) is greater than the precedence on + (12),
there are no more steps to take and we return to the original trace.

. . .

→∅,0
ε, 1*2, +left,12 · 3
→∅,0
ε, (1*2)+3, ε

Note that parentheses around 1 * 2 denote that 1 * 2 is a sub-term of
(1 * 2) + 3 but no “real” parentheses are present.

4.5 Expanding Terms

After expandTokens and the enforestation relation have completed a first pass
through a given scope, expandTerms (Figure 4.7) is invoked on the partially expanded
terms. In the formalization presented here the primary purpose of expandTerms is to
invoke expand on the unexpanded tokens inside of function bodies and if branches.
Deferring expansion of these tokens to a second pass enables all macro definitions in the
scope to be discovered and loaded. As mentioned before, this allows the identity macro
to be defined after its (textual) use:

1 function foo() {

2 id 42
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Figure 4.7: expandTerms Function

expandTerms : (Term∗,Env)→ Term∗

expandTerms(id ·M,E) = id · expandTerms(M,E)
expandTerms(n ·M,E) = n · expandTerms(M,E)
expandTerms(m1 op m2 ·M,E) = m1 op m2 · expandTerms(M,E)
expandTerms(var id = m ·M,E) = var id = m · expandTerms(M,E)
expandTerms(m (S) ·M,E) = let M1 = expand(S,E)

in m (M1) · expandTerms(M,E)
expandTerms(function id1 (id2) {S1} ·M,E) = let M1 = expand(S1, E)

M2 = expandTerms(M,E)
in function id1 (id2) {M1} ·M2

expandTerms(if (S1) {S2} ·M,E) = let M1 = expand(S1, E)
M2 = expand(S2, E)
M3 = expandTerms(M,E)

in (M1) {M2} ·M3
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3 }

4 macro id {

5 rule { $x } => { $x }

6 }

The expandTerms function is also the location where some important hygiene
operations take place. In particular, when expandTerms encounters a function declara-
tion, the parameters to the function must be renamed in its body. This is described in
Chapter 5.

4.6 Infix and Delimiters

Two important characteristics of the infix macro design are (1) that infix
macros match a prefix of terms rather than syntax and (2) they cannot match out-
side of their containing delimiter.

While standard macros match on a sequence of tokens, the prefix for an infix
macro is terms. This choice prevents infix macros from attempting to “split” terms
during a match. For example, consider this use of the ES2015 arrow function:

1 macro => {

2 rule infix { ($param) | $body:expr } => {

3 function ($param) { return $body; }

4 }

5 }

6 foo (x) => x

By only providing an infix macro with the previously enforested terms as a
prefix, the => macro will only have the single term foo(x) in the prefix sequence and
thus fail to match.

In addition, infix macros cannot match outside of their containing delimiter.
For example, the prefix available to inf in foo(42 inf) is just 42; this macro cannot see
or match against the identifier foo.

This behavior should not be too surprising since standard macros also are not
able to match outside of their containing delimiter. However, unlike standard macros,
infix macro are also trapped inside the implicit delimiters of operators. For example,
consider an infix macro that attempts to match an addition operator and change it to
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subtraction:
1 macro inf {

2 rule infix { + | } => { - }

3 }

4 42 + inf 42

This example will fail to match since in the enforestation rule that handles
binary operators, the sub-enforestation of the right-hand side runs with the empty
prefix. Essentially, enforestation adds implicit parentheses to binary operators.

Variable declarations are also enforested with an empty prefix. This empty
prefix means that the following macro will fail:

1 let async = macro {

2 rule infix { var $id = | $call:expr

3 $rest . . .} => {

4 $call.then(function($id) {

5 $rest . . .

6 });

7 }

8 }

9 var x = async f(42);

While the above example may seem reasonable at first glance, allowing infix
macros to match before the initializer leads to complicated interactions with hygiene.
In the above example, x starts as a variable binding so it should be bound in the
surrounding scope; however, the infix macro moves x to a function parameter, which
should only be bound in the function’s scope. It is unclear what the hygiene algorithm
should do in a case like this so I have chosen to simply disallow infix macros matching
outside of the initializer expression.

In any event, the async behavior shown here could be equivalently implemented
in a more reasonable way by creating a macro for var instead:

1 macro var {

2 rule infix { $id = async $call:expr

3 $rest . . .} => {

4 $call.then(function($id) {

5 $rest . . .

6 });
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7 }

8 }

9 var x = async f(42);

This implementation of async makes it clearer that the behavior of variable
declarations is being changed and avoids any dubious interactions with bindings.

The implementation of sweet.js actually loosens the implicit delimiter restric-
tion around infix and operators (though not variable declarations). This loosening re-
quires a much more complicated enforestation algorithm that can track a prefix through
partially enforested operators. It is unclear that this additional expressiveness afforded
to infix macros is worth the added complexity to enforestation and future versions of the
implementation will more closely align with the infix design presented in the formalism
here.

Also worth noting, since the prefix is a sequence of expanded terms, any macros
that appear before an infix macro will have already been expanded by the time the infix
macro is invoked. This behavior introduces an asymmetry between the kinds of syntax
an infix macro can match.

Even with these limitations, infix macros are a powerful complement to custom
operators and extend the kinds of syntactic forms that can be implemented.
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Chapter 5

Hygiene

Maintaining hygiene during macro expansion is perhaps the single most critical
feature of an expressive macro system. Hygiene roughly means that an invocation of a
macro does not introduce or use bindings that clash with what the programmer expects
in the context of the invocation. Hygiene was worked out primarily in the Scheme
community over many years [Kohlbecker et al., 1986, Bawden and Rees, 1988, Clinger,
1991, Dybvig et al., 1992]. The description of hygiene given here is purposefully vague
because to date there has not been a crisp formal theorem for the fully general macros of
Racket or sweet.js, though there have been formalizations for typed subsets of Scheme
[Herman, 2010] and steps towards a full non-operational formalization [Adams, 2015].

The hygiene condition enables macros to be true syntactic abstractions by
removing the burden of reasoning about a macro’s implementation details from the user
of a macro.

This chapter first presents an overview from a user’s perspective of the kinds
of naming clashes that the hygiene condition guards against and then extends the ex-
pansion formalization from Chapter 4 with hygiene.

5.1 Hygienic Binding

At a high-level there are two kinds of potential name clashes that hygiene
guards against: name clashes from bindings introduced by a macro invocation (discussed
in this section) and name clashes from bindings referenced from a macro definition
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Figure 5.1: Normal Unhygienic Swap Expansion

1 var foo = 10, bar = 20;

2 swap(foo, bar)

expands to ⇒
1 var foo = 10, bar = 20;

2 var tmp = foo;

3 foo = bar;

4 bar = tmp;

(discussed in the next section).
The classic example of hygiene protecting a binding introduced by a macro is

the swap macro, which introduces a new binding tmp to perform the standard variable
swapping operation:

1 macro swap {

2 rule { ($a, $b) } => {

3 var tmp = $a;

4 $a = $b;

5 $b = tmp;

6 }

7 }

A normal use of swap will expand as shown in Figure 5.1. However, if the
macro invocation context uses a variable with the same name as the temporary variable
introduced by the macro there is a potential problem as seen in Figure 5.2.

In JavaScript, redeclarations of a variable are ignored (so this code only defines
a single tmp variable) and thus this code does not actually perform the expected swapping
operation.

In a hygienic system like sweet.js, the expansion algorithm gives the binding
introduced by the macro invocation a unique name and no clash occurs:

1 var tmp = 10, bar = 20;

2 var tmp2 = tmp;
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Figure 5.2: Bad Unhygienic Swap Expansion

1 var tmp = 10, bar = 20;

2 swap(tmp, bar);

expands to ⇒
1 var tmp = 10, bar = 20;

2 var tmp = tmp;

3 tmp = bar;

4 bar = tmp;

3 tmp = bar;

4 bar = tmp2;

If clashes of this type were the only kind of potential binding problems the
hygiene algorithm could be simple; hygiene could give all variable bindings introduced
by a macro invocation a globally unique name. However, hygiene also involves references
in macro definitions, which complicates the algorithm.

5.2 Hygienic References

The definition of a macro may contain references to variable bindings declared
in the scope of the macro definition and those references must be consistent regardless
of the invocation context.

For example, consider a simple logger macro that uses the builtin JavaScript
function console.log to log a message:

1 macro logger {

2 rule { ($msg . . .) } => {

3 console.log($msg . . .)

4 }

5 }

A macro author expects console to always be lexically bound from the macro
definition site. Absent of the hygiene algorithm however, the variable console could be
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Figure 5.3: Unhygienic Console Expansion

1 function sympathy(console) {

2 logger(’attempting to help out . . .’);

3 console(’you are amazing!’);

4 }

expands to ⇒
1 function sympathy(console) {

2 console.log(’attempting to help out . . .’); // wrong console!

3 console(’you are amazing!’);

4 }

rebound. Consider a sympathy function that accepts a console function used to send
encouragement. The unhygienic expansion of logger in the sympathy function is shown
in Figure 5.3. In a non-hygienic system, the console bound by the function captures
the console reference introduced by the logger macro.

In sweet.js and other hygienic systems the references are kept distinct via
renaming:

1 function sympathy(console2) {

2 console.log(’attempting to help out . . .’);

3 console2(’you are amazing!’);

4 }

Unhygienic macros are not true abstractions since they force both macro au-
thors and macro users to reason about all of the potential names that could be in all
scopes. Hygiene allows users to reason about macros in the same way they reason about
standard lexical scoping rules.

5.3 Macro Scoping

Macros in the Lisp and Scheme tradition are bound and scoped in an analogous
fashion to other binders in the language. By following the scoping rules of the language,
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Figure 5.4: PI Expansion

1 #define PI 3.14

2

3 main()

4 {

5 char PI[] = "cherry";

6 }

expands to ⇒
1 #define PI 3.14

2

3 main()

4 {

5 char 3.14[] = "cherry";

6 }

macros can shadow and be shadowed by other definitions in a program. This is in
contrast to macro systems that work solely on lexical substitution like the C preprocessor
(cpp) that do not respect scoping rules for macro definitions. For example, Figure 5.4
attempts to declare a variable PI where a macro with the same name has already been
defined. This obviously results in a parse error. This expansion result happens because
cpp simply performs lexical substitution; cpp does not take the scoping rules of C
into account when performing its substitution. A more powerful macro system that
integrates into the binding and scoping rules of the language would allow this example
to do the more intuitive thing of rebinding PI in the function scope.

In Racket the above example can be written:
1 (define-syntax-rule (PI)

2 3.14)

3

4 (define (main)

5 (let ([PI "cherry"])
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6 PI))

Because the macro system is scoping aware, the let binding of PI inside the
main procedure shadows the macro declared in the surrounding scope and a call to the
procedure results in "cherry" as expected.

5.3.1 Racket Binding Forms

Racket has two basic binding forms for run-time values (with a fair number
of variations): the define form and the let form. The let form is straightforward and
scopes its binders to its body:

1 (let ([PI "cherry"])

2 (string-append PI " pie"))

3 ; evaluates to "cherry pie"

The define form depends on the context in which it is used (the top-level
context, internal definition context, etc.) but it roughly means bind in the surrounding
scope. So, in an internal definition context (an internal definition context is a context
in which expressions and definitions can mix such as the body of a function) like the
following, the PI binding is scoped to the function make-pi:

1 (define (make-pi)

2 (define PI "cherry")

3 (string-append PI " pie"))

4 (make-pi)

5 ; evaluates to "cherry pie"

Racket also provides the corresponding binders let-syntax and define-syntax

that bind macros according equivalent scoping rules as the binding forms for run-time
values.

5.3.2 Sweet.js Binding Forms

The binding form situation in JavaScript is not quite as conceptually clean as
in Racket. The main binding forms in JavaScript are the function declaration form and
the var declaration form. Function declarations and var are similar to Racket’s define

in that the value is bound in the surrounding scope and declarations and other forms
can be freely mixed.
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However, they diverge in some important ways. Variable declarations are
scoped to the surrounding function scope and are hoisted out of surrounding blocks:

1 function foo() {

2 if (true) {

3 var x = 42

4 }

5 return x;

6 }

7 foo() // evaluates to 42

In addition, redeclaring the same name is not an error in JavaScript and does
not create a new binding; a second variable declaration of the same name is treated as
a no-op:

1 function foo() {

2 var x = 42;

3 var x = "bar";

4 return x;

5 }

6 foo() // evaluates to "bar"

In sweet.js there are two macro binding forms: a macro declaration and a
let-bound macro declaration. Conceptually the macro declaration form behaves equiva-
lently to a function declaration form where the macro is bound in the surrounding scope
and in its template.

1 var id = "bar";

2 function foo() {

3 // the id macro is bound inside the function foo

4 macro id {

5 rule { $x } => { $x }

6 }

7 return id 42

8 }

9 id // bound to the string "bar"

A let-bound macro behaves similarly except that the macro is not bound in its
template. Let-bound macros allow macro authors to override builtin syntax forms like
function:
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Figure 5.5: Mixed Definitions Expansion

1 (define (foo)

2 (define y (id 100))

3 (define-syntax-rule (id x) x)

4 (+ y y))

expands to ⇒
1 (define (foo)

2 (define y 100)

3 (+ y y))

1 let function = macro {

2 rule { $name ($params . . .) { $body . . .} } => {

3 function $name($params . . .) {

4 console.log("calling the function");

5 $body . . .

6 }

7 }

8 }

A normal macro declaration form here would have resulted in an infinite ex-
pansion loop.

Interestingly, the particular syntax of JavaScript places limitations on macro
binding forms that are not present in Racket. The expansion algorithm in Racket allows
internal definitions and macro uses to be freely mixed in a given scope. This means that
a macro can be used in an internal definition before the macro’s definition as seen in
Figure 5.5

In order to support mixing use and definition, the Racket expander must make
multiple passes through a scope. The first pass discovers and loads macro definitions
but crucially defers expansion in the right-hand side of an internal definition since there
may be uses of macros that have not yet been loaded. The second pass expands inside
the right-hand side of internal definition using the macros discovered during the first
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pass.
For example, after the first pass of expansion, the example in Figure 5.5 will

become:
1 (define (foo)

2 (define y (id 100))

3 (+ y y))

Here, the id macro has been loaded into the compile-time environment. During
the second pass, the expander will expand inside of internal definitions, so the example
becomes:

1 (define (foo)

2 (define y 100)

3 (+ y y))

Critical for Racket’s ability to mix internal definitions and macro uses is the
fully delimited nature of internal definitions. The expander can skip over all of the
syntax inside of the internal definition because there actually is an inside to skip over.
However, this is not true for JavaScript since var statements are not delimited. It is
thus not possible to use a macro that has not yet been defined in a var statement in
sweet.js.

For example, this will fail:
1 function foo() {

2 var y = id 100;

3 macro id { rule { $x } => { $x } }

4 return y + y;

5 }

When the expander reaches the var statement during the first pass, it has
not yet loaded the id macro into the compile-time environment, so id 100 will be left
unexpanded. Since id 100 is not a valid expression, this will fail to parse.

Note that at first glance it might appear that the line-ending semicolon could
serve to delimit a var statement but this will not work for two reasons. First, a semi-
colon is just a token which might be consumed by a macro. Second, the JavaScript
specification calls for missing semicolons to be automatically inserted by the parser, so
it is not guaranteed that a semicolon will close every var statement.

Though the expander cannot defer expansion of var statements, it still does
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Figure 5.6: Macro After Function Expansion

1 function foo() {

2 return id 100;

3 }

4 macro id { rule { $x } => { $x } }

expands to ⇒
1 function foo() {

2 return 100;

3 }

two passes so that the second pass can expand inside of delimiters. For example, a
macro can be used inside of a function body that appears before the macro definition
as seen in Figure 5.6

While it is unfortunate that the syntax of JavaScript prevents fully general
mixing of macro use and definition, the primary need for flexible macro definition is
when writing mutually recursive macros, which is fully supported with the sweet.js
approach.

5.4 Hygiene Implementation for sweet.js

The standard hygiene algorithm from Scheme and Racket is the mark and
rename technique [Dybvig et al., 1992]. The key idea of mark and rename is that
every identifier carries with it a list of potential renamings. Every binding form (e.g., a
function declaration) pushes a new renaming to each identifier in its scope.

So in the following example, the outer foo function renames its parameter to
x1 and pushes that renaming down to everything in its body.

1 function foo(x) {

2 function bar(x) {

3 return x;

4 }
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5 return x;

6 }

The bar function does the same with its parameter, renaming it to x2, which
takes precedence over the x1 renaming and we get the final expanded code:

1 function foo(x1) {

2 function bar(x2) {

3 return x2;

4 }

5 return x2;

6 }

Syntax objects must carry all of the renaming contexts until expansion has fully
completed because it is not possible to know which renaming to use until all contexts
have been applied.

So far the process described is basically standard lexical scoping but macro
invocations complicate this by combining identifiers from the macro use-site and the
macro definition site. To distinguish these identifiers, the expander also uses marks,
which are added to syntax that is introduced by a macro invocation. Resolving the
binding of an identifier then takes into account both the marks and renames on the
syntax object when deciding which renaming to use.

The mark and rename approach as described so far is already rather compli-
cated but it gets even more complicated when dealing with Racket’s internal definitions
(similar to variable declarations in JavaScript). To handle internal definitions Racket
uses definition contexts [Section 3.8] [Flatt et al., 2012], which are difficult to reason
about and hard to implement correctly or efficiently.

Motivated by the complexity of the hygiene algorithm, Matthew Flatt recently
invented an alternate technique for tracking hygienic bindings in Racket based on sets
of scopes [Flatt, 2015] that simplifies the hygiene algorithm.

While sweet.js initially used the mark, rename, and definition context ap-
proach, it now uses an adapted set-of-scopes algorithm, which I describe in the following
sections.
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5.5 Scopesets Overview

The key idea of scopesets is that during expansion each syntax object carries
a set of the scopes in which it appears. Syntax forms that create a new scope (like
function declarations) just add a fresh scope to each syntax object in its body. For
example in the following example, a is the top-level scope and b is the scope created for
the function foo.

1 var x{a} = 42;

2 var y{a} = 24;

3 function foo{a}(x{a,b}) {

4 return x{a,b} + y{a,b};

5 }

In addition, there is a global binding map that associates each variable with a
set of scopeset and binding pairs, where a binding is a fresh variable. The above snippet
for example would have the following binding map where x1, x2, y1, and foo1 are all
fresh variables.

x→ ({a}, x1), ({a, b}, x2)
y → ({a}, y1)
foo→ ({a}, foo1)

When expansion finishes, the code generator will use the binding map to re-
place variable with its appropriate binding from the binding map.

1 var x1 = 42;

2 var y1 = 24;

3 function foo1(x2) {

4 return x2 + y1;

5 }

Note that the y inside of the function body has a different scopeset ({a, b})
than the y at the top-level ({a}). When retrieving a binding from the binding map for
a given identifier, the algorithm picks the scopeset/binding pair where the scopeset is
the biggest subset of the identifier’s scopeset. So, when retrieving the binding for y{a,b}

inside the function body, {a} is the biggest subset of {a, b} and so it resolves to the
top-level binding for y.
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Macros of course are what make hygiene interesting. The following is a simple
example with a macro definition and invocation.

1 var x{a} = 42;

2 macro m{a} {

3 rule { $y } => {

4 function foo{a}(x{a}) {

5 return x{a} + $y;

6 }

7 }

8 }

9 m x{a};

If we expand this example as described so far, we run into a problem.
1 var x{a} = 42;

2 function foo{a}(x{a}) {

3 return x{a} + x{a};

4 }

Here, a is the top-level scope and b is the scope for the function body. What
we wanted to happen is for the x binding introduced by the macro to be distinct from
the x provided to the macro. However, the x provided to the macro was captured by
the x binding introduced by the macro.

Readers familiar with traditional hygiene algorithms can probably guess that
the way scopsets addresses this problem is by introducing a new scope for macro invo-
cation; syntax freshly generated by the macro is marked with a new macro invocation
scope. Similar to earlier mark and rename approaches, we mark the syntax provided
to the macro invocation along with the syntax returned by the macro invocation. Dou-
ble scopes are made to cancel out so only the syntax created by the macro carries the
invocation scope. So, immediately after the macro is invoked we get:

1 var x{a} = 42;

2 function foo(x{a,b}) {

3 return x{a,b} + x{a};

4 }

Here b is the macro invocation scope. Then, expansion applies the function
scope c to the body of the function and we get:
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1 var x{a} = 42;

2 function foo(x{a,b,c}) {

3 return x{a,b,c} + x{a,c};

4 }

Since {a, b, c} is not a subset of {a, c} but {a} is, we get the correct bindings
that distinguish the two x identifiers.

Unlike the previous mark and rename approach, we also must keep track of
syntax provided to a macro invocation along with the syntax returned from a macro
invocation. To see why, consider the following:

1 macro m {

2 rule { $x } => {

3 function foo(x{a}) {

4 function bar($x) {

5 return x{a};

6 }

7 }

8 }

9 }

10 m x{a}

Here, the m macro expands to two nested functions foo and bar where the
parameter identifier for bar is taken from the macro use-site. If we apply b as the scope
for the macro invocation, c as the scope for the foo function, and d as the scope for the
bar function we run into an ambiguity:

1 function foo(x{a,b,c}) {

2 function bar(x{a,c,d}) {

3 return x{a,b,c,d};

4 }

5 }

Note that the scopesets for both x{a,b,c} and x{a,c,d} are subsets of the same
length for x{a,b,c,d}. The intent of course is to bind the inner reference of x to the binding
occurrence at foo.

The solution is to mark the syntax provided to the macro with use-site scopes.
Now the invocation of m will look like m x{a,e} where e is the use-site scope. The full
expansion of our running example is the following.
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1 function foo(x{a,b,c}) {

2 function bar(x{a,c,d,e}) {

3 return x{a,b,c,d};

4 }

5 }

Note that x{a,c,d,e} is not a subset of x{a,b,c,d} and thus the ambiguity is resolved.
However, the introduction of use-site scopes causes a problem for macros that

expand into declarations. For example,
1 macro def {

2 rule { $x } => { var $x; }

3 }

4 def x;

5 x = 42;

The intent with this example is that since x is provided to the def macro, x

should be bound at x = 42. However, the addition of the use-site scope makes the two
x identifiers distinct:

1 var x{a,b};

2 x{a} = 42;

The solution to this problem is to keep track of the use-site scopes introduced
during expansion and remove them from identifiers placed in a declaration position.

5.6 Ambiguous Scopeset Errors

Note that it is possible to write macros that result in ambiguous scopeset
errors. Ambiguous scopeset errors occur when multiple “biggest subsets” are returned
from the binding map in resolve. To illustrate these errors, consider the following
example adapted from [Flatt, 2015] that uses var declarations and a macro-defining-
macro.

1 macro varViaMacro {

2 rule { $m $givenM } => {

3 var x = 1;

4 macro $m {

5 rule { } => {

6 // var name comes from the original use-site
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7 var $givenM = 2;

8 // which declaration should x be bound to?

9 x;

10 }

11 }

12 }

13 }

14 varViaMacro m x;

15 m

Here the varViaMacro macro expands to a variable declaration for x and another
macro declaration whose name is supplied by the invocation of varViaMacro that expands
to a user-supplied var declaration along with a reference to x. After fully expanding
this example we have the following scopesets:

1 var x{a,b} = 1;

2 var x{a,c} = 2;

3 x{a,b,c};

The scopes in this example are a for the top-level scope, b for the expansion
scope of the varViaMacro macro, and c for the expansion scope of the m macro. The
problem is that the scopesets for both declarations of x are equal size subsets of the x

reference and thus it is ambiguous which binding should be chosen.
As [Flatt, 2015] points out, this macro is, in some sense, ambiguous as to which

binding should be chosen so an ambiguous error is correct. The prior hygiene algorithm
with definition contexts did not throw these kinds of ambiguous binding errors. Rather,
in the example given here, the var x = 1 declaration would always be chosen. Flatt
reports that while constructed examples like this one demonstrate a difference between
the scopeset and definition context based hygiene algorithms, no practical examples of
rule macros that give rise to ambiguous scopeset errors have been found.

5.7 Formal Hygienic Semantics

To solidify the overview of scopesets just presented, this section extends the
semantics of Chapter 4 with scopesets.

To support hygiene, we first extend the grammar in Figure 5.7 and add a scope-
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Figure 5.7: Grammar for Hygienic Expansion

x, name ∈ Variable Variable
t ∈ Token ::= x | n | bop | (S) | {S} Token Tree
s ∈ Syntax ::= tC Syntax Object

id ∈ Identifier ::= xC Identifier

c ∈ Scope Scope
C ∈ ScopeSet = 2Scope Lexical Context

m ::= ExprTerm | StmtTerm Term
ExprTerm ::= id Identifier

n Numeric Literal
m op m Binary Operator
m (S) Call
function id (S) {S} Function Declaration

StmtTerm ::= var id = m Variable Declaration
if (S) {S} If Statement
macro id {S} Macro Declaration

S ::= s∗ Syntax Sequence
M ::= m∗ Term Sequence
a ::= left | right Associativity

binary ::= + | − | ∗ | / | . . . Binary Operator Symbols
bop ::= binarya,n Binary Operators
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Figure 5.8: Hygienic Expansion Environment

E ∈ Env ::= Name→p Transform
B ∈ BindingMap ::= Variable→p 2(ScopeSet, Name)

Transform ::= Var(id) | PrimTrans | MacroTrans
PrimTrans ::= VarDecl | FunDecl | MacroDecl | IfStmt

MacroTrans ::= (Match,Trans)
Match ::= (Term∗,Syntax∗)→ (Subst,Term∗,Syntax∗)
Trans ::= Subst→ Syntax∗

Subst ::= Variable→p Syntax∗

set to syntax objects. A scopeset (C) is a set of scopes ({c1, . . . , cn}) where a scope is an
element drawn from some recursively enumerable set (for example, an implementation
might simply use numbers to represent scopes).

Scopes by themselves do not represent any binding information. Rather, bind-
ing information is stored in the BindingMap map that associates variables with a set
of scopeset/name pairs. The name part of the pair represents the binding while the
scopeset records the scopes in which the binding occurs.

To get a binding for a syntax object, we now use the resolve function from
Figure 5.9 that looks up a syntax object’s binding in the binding map. The key idea
of resolve is that it looks up the scopeset/name pairs for the given syntax object and
then returns the name from the pair who’s scopeset is the biggest subset of the syntax
object’s scopeset.

For example, if the binding map for x contains the pairs ({a},name1) and
({a, b},name2), resolve of x{a,b,c} would return name2 since {a, b} is the biggest subset
of {a, b, c} while resolve of x{a,c} would give name1 since {a} is the biggest subset of
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Figure 5.9: Resolve Function

resolve : (BindingMap, Identifier)→ Name
resolve(B, xC) = x

if x 6∈ dom(B)
resolve(B, xC) = namei

if {(C1,name1), . . . , (Cn,namen)} = B(x)
Ci = biggestSubset(C, {C1, . . . , Cn})
(Ci,namei) ∈ B(x)

{a, c}.

5.7.1 Hygienic Enforest

The enforest relation in Figure 5.10 is now parameterized by the binding map
along with the compile-time environment and current precedence level.

As one might expect, the biggest change is to the rule that handles macro
invocation. After pulling the (match, trans) pair out of the compile-time environment,
enforest creates two new scopes c and cuse where c is used to distinguish syntax generated
by the macro and cuse is used to distinguish syntax provided to the macro (i.e., used
by the macro). Both scopes are applied via the mark function defined in Figure 5.11
to the substitution environment θ but then only the c scope is applied to the result of
trans. Like marks in the old hygiene algorithm two scopes cancel out so by applying c
twice, syntax that has a c scope must have been generated by the macro rather than
be provided by it. Since the cuse scope is applied only to the substitution environment,
syntax with a cuse scope must have been present at the macro use-site.

Since we need to remove use-site scopes from identifiers that wind up in defi-
nitions, we also add the cuse scope to the set of use-site scopes (C). The use-site scope
set will be used in expandTokens described in the next section.
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Figure 5.10: Hygienic Enforest Function

M, ⊥, id · S, C →n,E,B M, id, S, C
M, ⊥, n1 · S, C →n,E,B M, n1, S, C

M, id1, S, C →n,E,B M, id2, S, C

if Var(id2) = E(resolve(id1, B))
M, id, S, C →n,E,B M ′, ⊥, mark(Sres, c) · S′, C ∪ {cuse}

if (match, trans) = E(resolve(id, B))
c, cuse fresh

(θ,M ′, S′) = match(M,S)
Sres = trans(mark(θ, {c, cuse}))

M, idvar, id · = · S, C →n,E,B M, var id m, S′, C ′

if VarDecl = E(resolve(idvar, B))
ε, ⊥, S, C →∗0,E,B ε, m, S′, C ′

m ∈ ExprTerm
M, idfun, id1 · (id2) · {S1} · S2, C →n,E,B M, function id1 (id2) {S1}, S2, C

if FunDecl = E(resolve(idfun, B))
M, idif, (S1) · {S2} · S3, C →n,E,B M, if (S1) {S2}, S3, C

if IfStmt = E(resolve(idif, B))
M, idmac, id · {S1} · S2, C →n,E,B M, macro id {S1}, S2, C

if MacroDecl = E(resolve(idmac, B))
M, m, (S) · S′, C →n,E,B M, m (S), S′, C

if m ∈ ExprTerm
M, m1, bopa,nop · S, C →n,E,B M, m1 bop m2, S

′, C ′

if nop >a n

ε, ⊥, S, C →∗nop,E,B ε, m2, S
′, C ′

m1 ∈ ExprTerm
m2 ∈ ExprTerm
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Figure 5.11: Mark Function

mark : (Syntax∗,Scope)→ Syntax∗

mark(tC · S, c) = tC
′ · mark(S, c)

if c 6∈ C
C ′ = C ∪ {c}

mark(tC · S, c) = tC
′ · mark(S, c)

if c ∈ C
C ′ = C \ {c}

mark : (Subst,Scope)→ Subst
mark({(x1, S1), . . . (xn, Sn)}, c) = {(x1, mark(S1, c)), . . . (xn, mark(Sn, c))}

Our collection of expand functions are now much more interesting than in
Chapter 4 and the reason for separating the work into three functions hopefully makes a
little more sense. Each expand function now takes as additional parameters the binding
map (B), a set of the use-site scopes (C), and a scope (c) to distinguish let-bound
macros as I will describe in section 5.8.

5.7.2 Hygienic expandTokens

For expandTokens defined in Figure 5.13, the cases for macro, variable, and
function declarations must all do similar work for hygiene. In particular, each case takes
the scope set C of the declaration’s identifier and removes any use-site scopes. It then
extends the binding map with a pair of the modified scopeset and a fresh binding and
extends the compile-time environment with a fresh binding mapping to the meaning of
the declaration (in the case of a macro declaration the meaning is the macro transformer
resulting from loadMacro and for the others it is a var transformer with the declaration
identifier with the use-site scopes removed).
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Figure 5.12: Hygienic Expand

expand : (Syntax∗,Env,BindingMap,Scopeset)→ Term∗

expand(S, E, B, Cuse, c) = expandTerms(M, E′, B′, C ′use, c)
if expandTokens(ε, S, E, B, Cuse, c) = (M, E′, B′, C ′use)

The expandTokens function does this hygiene work for the flat declarations
because the meaning for each declaration must be immediately loaded into the compile-
time environment. In contrast, the nested bindings in a function parameters is de-
ferred to the expandTerms function (expansion does not move into nested delimiters
until expandTerms).

5.7.3 Hygienic expandTerms

In expandTerms defined in Figure 5.14, the interesting case that has changed is
function declarations. The function case creates a new scope c′ and extends the function
parameter’s scopeset with the new scope along with every syntax object in the function’s
body. Then the binding environment and compile-time environment are extended with
the new bindings.

5.8 Non-Recursive Macro Declaration

A recurring challenge in hygienic macro system design is flat binding forms.
Nested binding forms, such as function declarations, separate out syntax where the
bindings should apply (the function body) from the bindings themselves (the parameter
list). Flat binding forms, such as variable declarations, mix bindings with the syntax
where the bindings should apply. In earlier approaches [Flatt et al., 2012] definition
contexts were used to handle flat binding forms. While scopesets have simplified some
aspects of flat binding forms, implementing a flat non-recursive macro declaration form
presents a challenge.
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Figure 5.13: Hygienic Expand Tokens

expandTokens : (Term∗,Syntax∗,Env,BindingMap,Scopeset)
→ (Term∗,Env,BindingMap,Scopeset)

expandTokens(M, ε, E, B, Cuse, c) = (reverse(M),Σ, B,Cuse)
expandTokens(M, S, E, B, Cuse, c) = expandTokens(mres ·M ′, S′, E′, B′, C ′use, c)
if M, ⊥, S, Cuse →∗0,E,B M ′, macro xC {S1}, S′, C ′use

C ′ = C \ C ′use

name is fresh
B′ = B[x := (C ′,name)]
E′ = E[name := loadMacro(S1)]
mres = macro xC′ {S1}

expandTokens(M, S, E, B, Cuse, c) = expandTokens(mres ·M ′, S′, E′, B′, C ′use, c)
if M, ⊥, S, Cuse →∗0,E,B M ′, var xC = m, S′, C ′use

C ′ = C \ C ′use

name is fresh
B′ = B[x := (C ′,name)]
E′ = E[name := Var(xC′)]
mres = var xC′ = m

expandTokens(M, S, E, B, Cuse, c) = expandTokens(mres ·M ′, S′, E′, B′, C ′use, c)
if M, ⊥, S, Cuse →∗0,E,B M ′, function xC (S1) {S2}, S′, C ′use

C ′ = C \ C ′use

name is fresh
B′ = B[x := (C ′,name)]
E′ = E[name := Var(xC′)]
mres = function xC′ (S1) {S2}

expandTokens(M, S, E, B, Cuse, c) = expandTokens(mres ·M ′, S′, E, B, C ′use, c)
if M, ⊥, S, Cuse →∗0,E,B M ′, mres, S

′, C ′use
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Figure 5.14: Hygienic Expand Terms

expandTerms : (Term∗,Env,BindingMap,ScopeSet,Scope)→ Term∗

expandTerms(id ·M, E, B, Cuse, c) = id · expandTerms(M, E, B, Cuse, c)
expandTerms(n ·M, E, B, Cuse, c) = n · expandTerms(M, E, B, Cuse, c)
expandTerms(m ·M, E, B, Cuse, c) = m · expandTerms(M, E, B, Cuse, c)
if m = m1 op m2

expandTerms(m ·M, E, B, Cuse, c) = m · expandTerms(M, E, B, Cuse, c)
if m = var x = minit

expandTerms(m ·M, E, B, Cuse, c) = m′ · expandTerms(M, E, B, Cuse, c)
if m = mfn (S)

M1 = expand(S, E, B, Cuse, c)
m′ = mfn (M1)

expandTerms(m ·M, E, B, Cuse, c) = m′ · expandTerms(M, E, B, Cuse, c)
if m = function id1 (xC

arg) {Sbody}

c′, namearg are fresh
C ′ = C ∪ c′

B′ = B[xarg := (C ′,namearg)]
E′ = E[namearg := Var(xC′

arg)]
S′body = mark(Sbody, c

′)
Mbody = expand(S′body, E

′, B′, Cuse, c
′)

m′ = function id1 (xC′
arg) {Mbody}

expandTerms(m ·M, E, B, Cuse, c) = m′ · expandTerms(M, E, B, Cuse, c)
if m = if (S1) {S2}

M1 = expand(S1, E, B, Cuse, c)
M2 = expand(S2, E, B, Cuse, c)
m′ = if (M1) {M2}
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Figure 5.15: Let Macros

expandTokens(M, S, E, B, Cuse, c) = expandTokens(Mres ·M ′, S′, E′, B′, C ′use, c)
if M, ⊥, S, Cuse →∗0,E,B M ′, let xC = macro {S1}, S′, C ′use

c′ fresh
S′1 = mark(S1, c

′)
C1 = C ∪ c′

C2 = C \ c
m1 = macro xC1 {rule {} => {xC2}}

m2 = macro xC {S′1}

Mres = m1 ·m2

The macro declarations form as described so far is recursive: the macro name
is bound in its body. While useful, we also need a form that is not recursive. In Racket
the non-recursive definition form is called let-syntax however the body in which the
macro definition is bound is nested:

1 (let-syntax [(m . . .)]

2 (m 42))

Maintaining hygiene for let-syntax is straightforward; a new scope is applied
only in the body of let-syntax and not in the initializer, which prevents m from being
bound inside of its definition.

We could use a similar nested body approach in JavaScript. Perhaps the syntax
could look something like:

1 let m = macro { . . . } in {

2 m . . .

3 }

However, this kind of nested declaration form is alien to the syntax of
JavaScript; a flat declaration form is needed instead. The challenge with a flat non-
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recursive form is making sure the macro name is bound in the surrounding scope but
not in the nested macro body scope.

The approach we take is to define a non-recursive macro in terms of two re-
cursive macros. In particular, when the expander gets to a let macro declaration where
the current scope is b:

1 let m{a,b} = macro { ...{a,b} };

2 m . . .

The expander will replace the definition with the following two recursive macro
declarations:

1 macro m{a,b,c} { rule {} => { m{a} } };

2 macro m{a,b} { ...{a,b,c} };

3 m . . .

The expander creates a new scope c for the body of the macro and installs
a new macro in the same scope that simply expands to the macro name but with the
surrounding scope b removed. That way, any occurrence of m{a,b,c} in the macro body
will expand to m{a}.

This is formalized in Figure 5.15 as a new case for expandTokens, which adds
a fresh scope c′ to the macro body and sets up a new macro that expands to the macro
name with the current scope c removed.

5.9 Infix Macros and Hygiene

Infix macros add one additional complication to the hygiene algorithm. In
particular, infix macros have the ability to manipulate declarations that have already
been registered in the binding environment, such as moving a declaration into a different
scope or removing a declaration entirely. For example, the macro in Figure 5.16 moves
the x declaration into a new function scope leaving the x reference an orphan with no
associated binding.

This behavior does not appear to be a practical concern since standard macros
can also expand to orphan references. The difference is that the declaration bindings
are not registered in the binding map for standard macros (since the macro is invoked
before expansion loads declarations into the binding map). So, it seems the only real
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Figure 5.16: wrapBefore Expansion

1 macro wrapBefore {

2 rule infix { $prefix . . . | } => {

3 function wrapper() {

4 $prefix . . .

5 }

6 }

7 }

8 var x = 42;

9 wrapBefore

10 x;

expands to ⇒
1 function wrapper() {

2 var x = 42;

3 }

4 x;
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difference between infix and standard macros in this regard is that a badly behaved infix
macro could pollute the binding map with orphan bindings.
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Chapter 6

Application - Contracts

Large software systems typically consist of many modules (e.g., packages,
classes, functions) produced by different development teams. When a system fails,
an initial difficulty is fault localization: identifying the module that failed to perform
as expected. Undocumented module interfaces are problematic for various reasons, not
least because they lead to disagreements about which module is considered “at fault”
and should be fixed.

Software engineers embrace behavioral contracts because they address many
of these problems. In particular, behavioral contracts provide a mechanism to explicitly
document each module’s assumptions and guarantees; to dynamically detect contract
violations; and to identify faulty modules. Behavioral contracts are widely used in
procedural, object-oriented, and functional languages, including Eiffel [Meyer, 1992], C
[Rosenblum, 1995], C# [McFarlane, 2002], Haskell [Hinze et al., 2006], Java [Karaorman
et al., 1999], Python [Tuglular et al., 2009], Scheme [Findler and Blume, 2006, Dimoulas
et al., 2011, Matthew Flatt and PLT, 2010], and SmallTalk [Carrillo et al., 1996].

In a dynamically typed language like JavaScript, tracking down the cause of a
bug can be particularly frustrating. Often simple type violations that could have been
caught by a type system slip through. For example, if o is undefined then attempting
to look up a property on it via o.foo will result in the runtime error:

1 TypeError: Cannot read property ’foo’ of undefined

While the error is descriptive enough for the proximate cause of the failure
(attempting to use an undefined value), it does not provide information about the
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ultimate cause (i.e., which piece of the code produced the undefined value in the first
place). The actual party at fault might be in some function or file not even in the stack
trace. You have to recreate the control flow in your head or jump into the debugger
just to figure out who to blame.

Behavioral contracts provide a way to specify invariants that are checked at
runtime and provide precise error reporting by blaming the correct module or section of
code responsible for the invariant violation. The invariants that contracts can enforce
are similar to the kinds of safety properties a type system can provide. Note that a
failure-free execution only holds for that execution; a second execution with different
inputs might trigger a contract violation.

This chapter describes contracts.js, a behavioral contract system for JavaScript
that provides declarative specification via macros. Contracts.js is implemented as a
runtime library that wraps JavaScript functions in contracts that enforce the specified
behavior along with a set of macros that ease the burden of specifying the program
behavior.

In the next section I present an overview of how contracts.js can be used along
with its primary features and then discuss how the library and macros are constructed.

6.1 Contracts.js Overview

This section gives a user-centered overview of how contracts.js works. To start
off, consider a simple object that represents cats.

1 var spot = {

2 name: "Spot",

3 age: 3,

4 haz: "cheezburger"

5 };

Along with our cat data representation we can also have a simple function
isVegetarian that checks the food habits of cats:

1 function isVegetarian(o) {

2 // without loss of generality

3 // only cheezburgers are meat

4 return o.haz !== "cheezburger";
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5 }

6 isVegetarian(spot); // false

Now consider attempting to invoke isVegetarian with a faulty cat object.
1 isVegetarian({

2 name: "Tiger",

3 age: 2

4 });

Calling this function will give us true (since o.haz is undefined, which is not
"cheezburger") but this result is clearly not intended. Note that this behavior is po-
tentially worse than a confusing error message since we get a result that is just subtly
wrong.

Contracts help us to address this problem by stating and enforcing what kinds
of data our functions work on. In this case the isVegetarian function must be called
with an object with a haz string property and it must return a boolean. So, using
contracts.js we can apply that contract like so:

1 @ ({haz: Str}) -> Bool

2 function isVegetarian(o) {

3 return o.haz !== "cheezburger";

4 }

The syntax for putting a contract on a function is:
1 @ ( . . .) -> . . .

2 function name( . . .) {

3 . . .

4 }

Contracts for each argument to the function go in the parentheses to the left
of the -> and the contract for the return value of the function goes on the right.

So in our isVegetarian example the argument contract is {haz: Str} (meaning
an object with a haz string property) and the return value contract is Bool for boolean
values.

Note that the object contract is only checking for the haz property, not every
property that a cat object might have (i.e., this is structural typing). Other “haz”-able
objects will work too.
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Now if we invoke isVegetarian with a faulty object, contracts.js will throw
a detailed exception helping the programmer to pinpoint exactly where the fault is
located.

1 Error: isVegetarian: contract violation

2 expected: Str

3 given: undefined

4 in: the haz property of

5 the 1st argument of

6 ({haz: Str}) -> Bool

7 function isVegetarian guarded at line: 2

8 blaming: (calling context for isVegetarian)

The contract violations reports both the expanded and actual value along with
appropriate line number information. It is even blaming the correct part of the code
(the caller to isVegetarian was at fault for supplying a bad cat object).

So to make this running example a little more interesting, consider a richer
representation for the kinds of things a cat can “haz”.

1 var spot = {

2 name: "Spot",

3 age: 3,

4 haz: ["cheezburger", "dataz", "iphonez", "fwend"]

5 };

Now that the haz property is an array, we also need to update the isVegetarian

function and associated contract appropriately.
1 @ ({haz: [ . . .Str]}) -> Bool

2 function isVegetarian(o) {

3 for (var i = 0; i < o.haz.length; i++) {

4 if (o.haz[i] !== "cheezburger") {

5 return false;

6 }

7 }

8 return true;

9 }

Here, the contract [ . . .Str] means that the value must be an array of strings.
Contracts.js also allows the programmer to specify a different contract for each index of
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the array by not using the ellipses (e.g., [Str, Num, Bool] is the contract for an array
like ["foo", 42, true]).

Now if the revised isVegetarian is invoked with a faulty object, contracts.js
will throw the appropriately descriptive error.

1 isVegetarian({

2 name: "Tiger",

3 age: 2,

4 haz: ["cheezburger", false]

5 });

The error message reads:
1 Error: isVegetarian: contract violation

2 expected: Str

3 given: false

4 in: the 1st field of

5 the haz property of

6 the 1st argument of

7 ({haz: [ . . ..Str]}) -> Bool

8 function isVegetarian guarded at line: 2

9 blaming: (calling context for isVegetarian)

Note that the error message actually informs the user of the exact index of the
array that failed the contract.

To generalize from our example so far, consider allowing the caller of
isVegetarian to decide how to define vegetarianism by providing a predicate function:

1 @ ({haz: [ . . .Str]}, (Str) -> Bool) -> Bool

2 function isVegetarian(o, isVeg) {

3 var ret = true;

4 for (var i = 0; i < o.haz.length; i++) {

5 if (!isVeg(o.haz)) {

6 ret = false;

7 }

8 }

9 return ret;

10 }
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Note that now our contract has a function argument contract (Str) -> Bool

for the isVeg predicate. This contract means that the caller to isVegetarian must
supply a function that when called with a string will return a boolean.

Attentive readers might have noticed a bug in the rewrite. Rather than calling
the isVeg predicate with an individual haz element, the entire haz array is passed to
isVeg. Thankfully, the contract will help us catch this bug.

1 isVegetarian({

2 name: "Tiger",

3 age: 2,

4 haz: ["cheezburger", "dataz"]

5 }, function(val) {

6 return val !== "cheezburger";

7 });

Attempting to invoke this code will cause the following error to be thrown.
1 Error: isVegetarian: contract violation

2 expected: Str

3 given: cheezburger,dataz

4 in: the 1st argument of

5 the 2nd argument of

6 ({haz: [ . . ..Str]}, (Str) -> Bool) -> Bool

7 function isVegetarian guarded at line: 2

8 blaming: function isVegetarian

Notice that the error blames the function isVegetarian instead of the caller.
Blaming isVegetarian is correct because isVegetarian is the one that went wrong by
invoking isVeg with the wrong type of argument.

Since the contract system helped us track down exactly where the fault was
introduced we can fix up the faulty code with ease.

1 @ ({haz: [ . . .Str]}, (Str) -> Bool) -> Bool

2 function isVegetarian(o, isVeg) {

3 var ret = true;

4 for (var i = 0; i < o.haz.length; i++) {

5 if (!isVeg(o.haz[i])) {

6 ret = false;

7 }
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8 }

9 return ret;

10 }

Now consider the case where the caller is at fault.
1 isVegetarian({

2 name: "Tiger",

3 age: 2,

4 haz: ["cheezburger", "dataz"]

5 }, function(val) {

6 val !== "cheezburger";

7 // forgot the return keyword!

8 });

Again, contracts.js provides a descriptive error message that helps us to localize
the problem.

1 Error: isVegetarian: contract violation

2 expected: Bool

3 given: undefined

4 in: the return of

5 the 2nd argument of

6 ({haz: [ . . ..Str]}, (Str) -> Bool) -> Bool

7 function isVegetarian guarded at line: 2

8 blaming: (calling context for isVegetarian)

Note that here blame correctly falls on the caller to isVegetarian for supply-
ing a bad isVeg function. This may seem like a small thing but the ability to correctly
ascribe blame is important as higher-order functions start to flow through your appli-
cation. Without blame tracking the code at fault might not show up in either the error
message or the stack trace causing the programmer to start looking in the wrong place
for the bug.

6.2 Contracts.js Implementation

There are two important pieces of the implementation of contracts.js: the
runtime library and the macros. Macros provide an expressive specification language
for programmers to describe the behavior they want the program to adhere to while
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the runtime library is responsible for wrapping functions and objects in contracts that
check and enforce the specification.

The core function of the runtime library is guard that takes a contract along
with a value and returns the value wrapped in an appropriate contract.

1 var numId = guard(fun(Num, Num),

2 function (x) { return x });

3

4 numId(42);

5 numid("42"); // throws error

In the above example, fun and Num are contract combinators corresponding to
contracts for functions and values that are typeof number respectively. A contract is
built up by applying the appropriate combinators. Here, the usage of the fun combinator
creates a contract that represents a function that must accept a number parameter and
return a number.

Trying to write a program using just this library quickly becomes unwieldy.
For example, consider the function below that takes two parameters, a number and a
function.

1 var f = guard(

2 fun([Num,

3 fun([Str, Num],

4 object({ foo: Str,

5 bar: Num}))],

6 Num),

7 function f(x, h) {

8 // . . .

9 });

Hopefully, this example illustrates the limitations of using the syntax tools built
into JavaScript (i.e., just functions and function application) to represent a contract
specification. Macros will allow us to provide a more readable syntax for users of the
contract library.
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6.3 Macro Implementation

At a high-level, the macro for contracts.js converts the contract syntax into the
appropriate application of contract combinators along with an invocation of the guard

wrapper function.
The macro identifier for wrapping a function in a contract is @ which was picked

since the use of @ in a similar fashion has precedent other languages such as Python
decorators [Smith et al.].

By using custom patterns, we can make the macro definition nicely compact
and declarative.

1 macro @ {

2 rule {

3 $c:contract

4 function $name ($params . . .) { $body . . . }

5 } => {

6 var $name = guard($c,

7 function $name($params . . .) {

8 $body . . .

9 })

10 }

11 }

The pattern $c:contract uses the separately defined contract macro to re-
cursively match the contract syntax and bind the result to $c. There are three kinds
of contracts that the contract macro must match against: object contracts, function
contracts, and primitive contracts. For each rule that the contract macro matches, it
expands to the appropriate invocations of the runtime contract combinators. Note that
the contract macro definition is recursively defined; each domain in a function contract,
for example, can be any of the contracts.

1 macro contract {

2 rule {

3 {

4 $($prop:ident : $c:contract) (,) . . .

5 }

6 } => {
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7 object({$($prop : $c) (,) . . .})

8 }

9 rule {

10 ($dom:contract (,) . . .) ->

11 $rng:contract

12 } => {

13 fun([$dom (,) . . .], $rng)

14 }

15 rule { $prim:ident } => {

16 $prim

17 }

18 }

For example, the contract macro would expand { foo: (Str) -> Bool } to
the combinator object({foo: fun([Str], Bool)}).

6.4 Additional Contract.js Features

In addition to the contract features described so far, contracts.js also sup-
ports a variety of declarative contract features such as dependent contracts, parametric
polymorphism, and asynchronous contracts.

6.4.1 Dependent Contracts

Contracts.js also supports contracts that depend on the value of arguments to
a function. Dependent contracts can be written as:

1 @ (x: Pos) -> res: Num | res > (Math.sqrt(x) - 0.1) &&

2 res < (Math.sqrt(x) + 0.1)

3 function square_root(x) { return Math.sqrt(x); }

Each argument must be named via the syntax <name>: <contract>. The named
arguments can be referenced in the dependency guard, which is an expression following
the pipe character. The guard is a predicate so if the guard evaluates to true the
dependent function contract will pass, otherwise it fails.

Similar to the syntax for ES2015 arrows, a guard with more than a single
expression can be written by surrounding a sequence of statements in a block:
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1 @ (x: Pos) -> res: Num | {

2 var fromlib = Math.sqrt(x);

3 return res <= x && fromlib === res;

4 }

5 function square_root(x) { return Math.sqrt(x); }

Note that guards in a dependent contract could potentially violate a contract
on one of the arguments:

1 @ (f: (Num) -> Num) -> res: Num | f("foo") > 10

2 function foo(f) { return f(24) }

Contracts.js follows indy semantics [Dimoulas et al., 2011] and so the contract
itself will be blamed:

1 expected: Num

2 given: ’foo’

3 in: the 1st argument of

4 the 1st argument of

5 (f: (Num) -> Num) -> res: Num | f (foo) > 10

6 function foo guarded at line: 2

7 blaming: the contract of foo

6.4.2 Parametric Polymorphism

Contracts.js also supports parametric polymorphism for contracts using a tech-
nique similar to the work of Guha et al. [Guha et al., 2007].

Parametric polymorphic functions can be defined using forall:
1 @ forall <name (,) . . .> <contract>

Here each name is a contract variable to be bound in <contract>. For example,
the identity function is defined as:

1 @ forall a (a) -> a

2 function id(x) { return x; }

The contract enforces the invariant that for all values, the value applied to
id will be returned from the function. If the function does not obey this invariant, a
contract violation will be triggered. For example, give the following const5 function:

1 @ forall a (a) -> a

2 function const5(x) { return 5; }
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An invocation such as const5(10) will throw the error:
1 const5: contract violation

2 expected: an opaque value

3 given: 5

4 in: in the type variable a of

5 the return of

6 (a) -> a

7 function const5 guarded at line: 2

8 blaming: function const5

A key idea of parametric polymorphism is that a function cannot inspect the
value of a polymorphic type (otherwise it does not really work “forall”). For example,
the inc_if_odd function behaves like the identity function unless its argument is odd,
which violates the parametricity invariant:

1 @ forall a (a) -> a

2 function inc_if_odd(x) {

3 if (x % 2 !== 0) {

4 return x + 1;

5 }

6 return x;

7 }

If we invoke the function with inc_if_odd(100), the following error will be
thrown:

1 inc_if_odd: contract violation

2 expected: value to not be manipulated

3 given: ’attempted to inspect the value’

4 in: in the type variable a of

5 the 1st argument of

6 (a) -> a

7 function inc_if_odd guarded at line: 2

8 blaming: function inc_if_odd

Note that some operations on values contracts.js cannot guard against (typeof

in particular) since JavaScript does not provide a mechanism for trapping operations
that are performed on primitive values. This could be addressed by using custom
operators to rewrite operations like typeof. In the next chapter, I will discuss virtual

98



values, a general technique that allows us to do the necessary trapping on primitive
values.

Following [Guha et al., 2007], contracts.js also does a basic form of contract
inference for polymorphic contracts with first order values. So for example, if a function’s
argument is specified to be a polymorphic array, contracts.js will check that the array
is homogeneous:

1 @ forall a ([ . . .a]) -> [ . . .a]

2 function arrayId(l) {

3 return l;

4 }

5 arrayId([1, 2, "three"]);

Contracts.js infers that the a should be a Num for this application of arrayId

and then throws and error when it discovers "three":
1 arrayId: contract violation

2 expected: (x) => typeof x === ’number’

3 given: ’three’

4 in: in the type variable a of

5 the 2nd field of

6 the 1st argument of

7 ([ . . ..a]) -> [ . . ..a]

8 function foo guarded at line: 2

9 blaming: (calling context for arrayId)

Contract inference is done with simple typeof checks, so it can only infer the
base types.

6.4.3 Asynchronous Contracts

Many applications suffer from bugs in the temporal behavior of a program
execution; a temporal bug occurs when program events happen in the the wrong order
(e.g., attempting to free the same memory location twice). Temporal contracts [Disney
et al., 2011] provide a general framework to enforce these temporal properties via a
contract system by specifying the order in which events are allowed during a program
run.

Core to JavaScript’s notion of temporality is the event loop. Unlike in a
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preemptive multithreading language like Java where the scheduler can switch control
between threads at any point, programs in JavaScript process each event one after
another. Each event is guaranteed to run to completion before returning control to the
event loop, which then processes the next event in a queue. While the run-to-completion
semantics of JavaScript is easier to reason about than threads, there is still plenty of
room for surprising temporal bugs to bite.

One area temporal bugs can arise is when confusing synchronous and asyn-
chronous functions. A synchronous function is a function that is called before returning
control to the event loop whereas an asynchronous function is called on some later turn
of the event loop.

As an example of a temporal bug that confuses synchronous and asynchronous
functions consider the following API for a Node.js program that provides a caching
layer in front of file access (adapted from an example in “Effective JavaScript” [Herman,
2012]):

1 var readFile = require("fs").readFile;

2 var cache = new Map();

3

4 function readCaching(fileName, onsuccess) {

5 if (cache.has(fileName)) {

6 onsuccess(cache.get(fileName));

7 } else {

8 readFile(fileName, "utf8", function(err, data) {

9 cache.set(fileName, data);

10 onsuccess(data);

11 });

12 }

13 }

As its name suggests, the Node.js function readFile reads a file and asyn-
chronously invokes its callback on some later turn of the event loop (once the file has
been read from the disk). At first glance readCaching seems fine, it calls the onsuccess

callback on a cache hit otherwise it first calls readFile before invoking onsuccess once
the file reading operation completes.

The problem here is that readCaching implements an inconsistent API; some-
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times the onsuccess handler is called asynchronously (when there is a cache miss) and
sometimes synchronously (when there is a cache hit). Client code that is unaware of
this inconsistency and expects the onsuccess to always be called asynchronously can
have its assumptions violated leading to subtle bugs. Consider:

1 var obj = {};

2 readCaching("foo.txt", function(data) {

3 obj.totalLength += data.length;

4 });

5 obj.totalLength = 0;

If "foo.txt" is not in the cache then this snippet works fine since the client has
a chance to initialize obj before the handler is called. If, on the other hand, "foo.txt"

is actually in the cache then the handler is called before the client code has a chance to
finish initializing obj, which means that the final value of totalLength will be NaN (since
in JavaScript undefined + data.length will be evaluate to NaN). Since the bug depends
on what is in the cache, we have a source of nondeterminism that makes reproducing
the failure difficult.

To address this problematic temporal behavior, contracts.js supports async
contracts. We can then rewrite our problematic example by wrapping the function
readCaching in the contract (Str, (Str) --> ()) -> ().

This contract says readCaching is wrapped in a function contract (written ->)
that takes two arguments, a string (Str) and an async contract ((Str) --> ()) that takes
a string and returns undefined. A function wrapped in the standard -> contract can be
invoked either synchronously or asynchronous whereas a function wrapped in the -->

contract must be invoked asynchronously (i.e., on some later turn of the event loop).
Since readCaching does not obey this specification, when onsuccess is synchronously
invoked on a cache hit the contract will throw an error blaming readCaching for violating
its contract.

To implement async contracts, we need a way to know on what turn of the
event loop an event is currently executing. A simple way to accomplish this is to make
a unique identifier for each event in the loop available to an async contract. Then the
process of checking for async/sync behavior can proceed as follows:

• Wrap the async function in its contract
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• Record the event loop id in which the wrapping took place

• When the wrapped async function is invoked:

– If the current loop id is equal to recorded loop id then raise blame

– Otherwise continue execution

An example implementation of async contracts for just asynchronous checking
(ignoring the domain and range contracts for simplicity) would look something like this:

1 function async(f) {

2 var loopId = getLoopId();

3 return function() {

4 if (getLoopId() === loopId) {

5 throw new Blame("Called synchronously");

6 }

7 // invoke the function normally

8 return f.apply(this, arguments);

9 };

10 }

While the function getLoopId() does not exist in JavaScript most JavaScript
environments provide the means for us to implement getLoopId() ourselves. In particu-
lar Node.js provides the function process.nextTick(cb) that invokes its callback before
the next turn of the event loop. This allows us to implement getLoopId() directly; each
time getLoopId is called the current loop id is returned and process.nextTick is used
to queue up a callback that increments loopId before the next turn of the event loop
occurs:

1 var loopId = 0;

2 function incLoopId() { loopId++; }

3 function getLoopId() {

4 process.nextTick(incLoopId);

5 return loopId;

6 }

In browser environments nextTick is not available but the setImmediate func-
tion could be used to a similar effect however it is only available in certain browsers
and its standardization is contested. In any event, polyfills for setImmediate exist1 that

1https://github.com/YuzuJS/setImmediate
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take advantage of clever tricks using postMessage (a function meant for cross-document
messaging) and web workers.

Unsurprisingly, it is straightforward to implement the dual of an async con-
tract: a sync contract that specifies the function must be invoked on the same turn of
the event loop. The only change required is that the loop id when the function is invoked
must be the same as when the function was wrapped in the sync contract. It is also
straightforward to implement a contract that checks that its argument is consistently
used either synchronously or asynchronously by checking how it was used the first time
and then consistently enforcing the same behavior.

6.5 Conclusion

Contracts.js demonstrates how macros can provide a declarative language on
top of a runtime library. Runtime libraries like contracts that suffer from poor developer
ergonomics can use macros to build powerful and declarative domain specific languages
that expand to simple library calls.
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Chapter 7

Application - Virtual Values

Programming language design is driven by multiple, often conflicting desider-
ata, such as: expressiveness, simplicity, elegance, performance, correctness, and exten-
sibility, to name just a few.

Macro systems focus on improving extensibility: the ability of a program-
mer using a particular language to extend the functionality and expressiveness of that
language. Extensibility is desirable on its own merits; it also helps control language
complexity by allowing many aspects of functionality to be delegated to libraries, and it
enables grassroots innovation, where individual programmers can extend the language
rather than being restricted to particular features chosen by the language designer.

In the last chapter I used macros to extend JavaScript with an additional
contract specification language; the contracts.js extension is an example of macros being
used to implement a domain specific language. A different avenue for language extension
that this chapter investigates is using macros to change the semantics of the existing
syntactic forms of a language.

The starting point for this language extension is the observation that language
semantics typically involve interaction between code and data, where code performs
various operations (allocation, assignment, addition, etc.) on data values. The behavior
of each operation is typically hardwired by the language semantics. If a function wants
to perform addition on its argument, then it must be passed a numeric value that can
be understood by the built-in addition operation. Consequently, a user-defined complex

type will not interoperate with code that uses the built-in addition operation.
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Computer science has a strong history of virtualizing various well-defined in-
terfaces. For example, virtualizing the interface between a processor and its memory
subsystem enabled innovations such as virtual memory, distributed shared memory,
and memory mapped files. Virtualizing the entire processor enables multiple virtual
machines to run on a single hardware processor, or to migrate between processors.

This chapter explores the benefits of “virtualizing” the interface between code
and data values. Specifically, this chapter presents a language extension called virtual
values. When a primitive operation expects a regular value but finds a virtual value
in its place, that operation invokes a trap on the virtual value. Each virtual value
contains a collection of traps, each of which is a user-defined function that describes
how a particular operation should behave on that virtual value.

Virtual values seem to provide a rather useful notion of language extensibility.
Of course, validating a language design feature is always difficult. In this chapter, I aim
to validate the expressiveness and extensibility benefits of virtual values by illustrating
the kinds of language extensions that they enable. These extensions include:

1. Additional numeric types, such as rationals, bignums, complex numbers, or deci-
mal floating points1, with traditional operator syntax.

2. Units of measure (meters, seconds, etc).

3. Taint tracking.

Each language extension is powerful yet small, thus illustrating that virtual
values offer an elegant and expressive mechanism for language extension.

These extensions are nicely composable. The taint extension automatically
tracks taint information through all code, including through the complex numbers ex-
tension.

To emphasize the modularity benefits of virtual values, consider for a moment
the consequences of an alternative architecture in which these extensions are imple-
mented as part of the language itself. This approach radically complicates the language,

1Decimal floating point numbers (IEEE 754-2008) avoids the unintuitive rounding errors of binary
floating point. This work is partly motivated by discussions within the ECMA TC39 Javascript stan-
dardization committee regarding the desire for a decimal floating point library that could support
convenient operator syntax.
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since each extension may cross-cut the other features and evaluation rules of the lan-
guage. For example, the taint tracking and complex number extension would interact
in a non-trivial fashion, since it would become necessary to track how taint information
flows through operations on complex numbers. In contrast, virtual values enable a clear
separation of concerns between the various extension modules, and provide a coherent
and extensible architecture. Composed virtual values are essentially an instance of the
Decorator Pattern [Gamma et al., 1995], which is a fairly general pattern that can be
applied to any interface, but it is particularly powerful when applied to the widely-used
interface between code and data.

This work is inspired by and builds on top of Miller and Van Cutsem’s proposal
for JavaScript Catch-All Proxies [Miller and Cutsem, Cutsem and Miller, 2010], which
provide traps for operations on functions and objects. These object proxies virtualize the
interface between code and objects (including function objects). Analogous functionality
has been provided in other languages, including via Racket’s chaperones [Matthew Flatt
and PLT, 2010].

Virtual values generalizes these prior ideas to virtualize the interface between
code and all data values, including primitive values such as integers. This generalization
enables additional applications, including the applications from the list above, and may
prove helpful for mainstream languages, which typically include a large collection of
non-object values.

SmallTalk [Goldberg and Robson, 1983] demonstrated the benefits of pure
object-oriented programming, in which all data values are objects, and all operations
(including addition and conditional tests) are method calls. SmallTalk supports the
definition of proxy objects that implement the doesNotUnderstand: method and that
delegate to an underlying object, a technique called behavioral intercession.

This pure object architecture provides flexibility and partially virtualizes the
interface between code and data, since many operations are performed via dynamically-
dispatched method calls. Virtual values extends the virtualization provided by pure
object languages, and moreover demonstrates that extensibility is not restricted to pure
object languages: virtual values enable similar extensibility in languages that are not
object oriented, or that are only partially object oriented and which include non-object
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values.
Language extensibility has been the target of a rich body of prior research. For

example, CLOS provides a very flexible metaobject protocol [Kiczales et al., 1991], which
gives the ability to inspect and modify the behavior of the object runtime system, often
in a very general manner. In comparison to CLOS, virtual values provides a focused
mechanism for changing the language semantics at a per-value granularity, Aspect-
oriented programming (AOP) [Kiczales, 1996] focuses on cross-cutting concerns that
span multiple components of a system. As one example, aspects have been used to
enforce fine-grained security policies in browsers [Meyerovich et al., 2010]. Virtual values
share similar motivations to AOP, and both enable the developer to insert code at
different point-cuts, but using virtual values these point-cuts are chosen dynamically
(based on where virtual values are used) rather than statically (as in weaving-based
approaches to AOP).

In a language with a rich static type system, the “trap dispatch” operations
on virtual values could be resolved statically, e.g.via Haskell’s [Paul Hudak and Simon
Peyton-Jones and Philip Wadler (eds.), 1992] type classes. This static type based ap-
proach provides stronger correctness guarantees and improved performance over virtual
values, but at a cost of more conceptual complexity and some decrease in flexibility.
Overall, virtual values seem best suited to providing extensibility in languages whose
static type systems are less rich than Haskell, or in dynamically typed languages. Also,
whereas type classes such as Haskell’s Num class virtualize some language operations
(those that manipulate Num values), virtual values generalize this idea to all language
operations.

The following sections present an overview of the existing proxy support in
ES2015 for objects and functions, discuss the implementation of virtual values that
extend ES2015 Proxies with support for primitive values, and show a series of languages
extensions written using virtual values. An open source implementation of virtual values
is publicly available2.

2http://disnetdev.com/sweet-virtual-values/
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7.0.1 Virtual Values and ES2015 Proxies

As a first step in implementing virtual values in JavaScript we can take ad-
vantage of the existing behavioral intercession facility in JavaScript, namely ES2015
Proxies [Miller and Cutsem, Cutsem and Miller, 2010], which, unlike virtual values, are
designed to only work for objects and functions.

ES2015 proxies are objects in JavaScript that wrap other objects and dispatch
to user-defined functions for every operation performed on the proxy. Proxies are created
by calling the Proxy constructor with two arguments, the object or function to proxy
and a handler object where each property on the handler corresponds to behavior to
trap. For each operation performed on the proxy, the corresponding handler method is
invoked. For example, the following proxy logs each property access.

1 var p = new Proxy({}, {

2 get: function(target, name) {

3 console.log("accessing property: " + name);

4 return target[name];

5 }

6 });

While the full handler API contains 14 methods to address many operations
that can be performed on functions and objects in JavaScript, for clarity of presentation
this chapter will consider a subset of the proxy API that only includes the get and set

traps (which correspond to property get and sets) along with the apply trap (which
corresponds to function application).

1 var p = new Proxy(x, {

2 // x[name]

3 get: function(target, name) { /* . . . */ },

4 // x[name] = val

5 set: function(target, name, val) { /* . . . */ },

6 // x(foo, bar, baz)

7 apply: function(target, thisArg, args) { /* . . . */ }

8 });

When a trap is invoked, the first argument provided to each trap, target, is
a reference to the underlying value being proxied. If a trap is not defined, a proxy will
perform the operation on the underlying object directly.
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7.0.2 Implementing Value Handlers

Before discussing the implementation details of our proxy extension, it is useful
to consider the API design we are trying to achieve. In particular, we would like the
design to be as familiar to existing users of ES2015 proxies as possible. To that end, the
design makes two changes to the existing proxy API. First, a proxy constructor can wrap
primitive values in addition to objects and functions (the existing proxy constructor
throws an error if called with a primitive). The second change is to add the unary, left,
and right traps to the proxy handler corresponding to unary operations on the proxy
and binary operations where the proxy is the right or left operand respectively.

1 var p = new Proxy(42, {

2 // ‘op‘ p

3 unary: function(target, op) {

4 // . . .

5 },

6 // p ‘op‘ right

7 left: function(target, op, right) {

8 // . . .

9 },

10 // left ‘op‘ p

11 right: function(target, op, left) {

12 // . . .

13 }

14 });

The design can be implemented on top of the existing proxies via macros. The
key issue that macros allows us to resolve is dispatching to the handlers for primitive
operations. This dispatching step works by defining sweet.js custom operators for each
primitive operation that expands to a call to a function binary defined by the rewriting
library:

1 operator + 14 left { $l, $r } => #{ binary("+", $l, $r) }

2 operator - 14 left { $l, $r } => #{ binary("-", $l, $r) }

3 . . .

At a high level, the binary function performs the standard primitive operation
if neither of its arguments are proxies and invokes the appropriate handler trap if either
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Figure 7.1: Proxy Constructor

1 // get a reference to the Proxy constructor

2 var ESProxy = window.Proxy;

3 // a WeakMap holds weak references to

4 // its keys, allowing the GC to reclaim

5 // them if there are no other references

6 var unproxy = new WeakMap();

7

8 function Proxy(val, handler) {

9 var p;

10 if (typeof val !== ’object’) {

11 // since the ESProxy constructor would throw

12 // an error for non-objects we need to pass

13 // in a dummy object

14 p = new ESProxy({}, handler);

15 } else {

16 p = new ESProxy(val, handler);

17 }

18 // map the proxy to the handler

19 unproxy.set(p, handler);

20 return p;

21 }
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Figure 7.2: Binary and Unary Functions

1 function unary(op, p) {

2 if (unproxy.has(p)) {

3 return unproxy.get(p).unary(op);

4 }

5

6 if (op === "!") return !p;

7 // . . .

8 }

9 function binary(op, left, right) {

10 if (unproxy.has(left)) {

11 return unproxy.get(left).left(left, op, right);

12 }

13 if (unproxy.has(right)) {

14 return unproxy.get(right).right(right, op, left);

15 }

16

17 if (op === "+") return left + right;

18 // . . .

19 }
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argument is a proxy. In order to perform these operations the binary function must (1)
have the ability to recognize proxies and (2) gain a reference to a proxy handler.

A straightforward way of implementing these functions is for the proxy con-
structor and binary to share an unproxy map the associates proxy references with their
handler objects. Figure 7.1 shows the implementation of the Proxy constructor and
Figure 7.2 shows the implementation of the binary and unary functions.

Because binary and unary share a reference to unproxy with the proxy con-
structor, binary and unary are able to recognize every proxy that has been created in
the system and dispatch to the appropriate handler.

7.1 Language Extension Examples

To illustrate the expressiveness and extensibility benefits of proxies, I now use
the virtual values API to implement a series of interesting language extensions. Each
extension is small yet adds significant expressive power to the language.

7.1.1 Identity Proxy

As a starting point for the series of language extensions, Figure 7.3 sketches
a simple proxy that has no effect on program evaluation. In particular, evaluating
makeIdentityProxy(x) returns a proxy in which each trap handler simply performs the
appropriate operation on the underlying argument x. For unary operations, the unary

trap dispatches to an auxiliary object unaryOps, which maps each unary operator string
to a function that performs the corresponding operation. The left and right traps
similarly dispatch to the binOps lookup table.

7.1.2 Tainting Extensions

Several languages, such as Perl, provide tainting as a built-in feature of the
language implementation, which introduces additional complexity into the compiler/in-
terpreter and runtime data representations.

Proxies allow this complexity to be isolated into a small extension module, as
shown in Figures 7.4 and 7.5. The function taint takes an argument x and returns

112



Figure 7.3: Identity Proxy

1 function makeIdentityProxy(x) {

2 return new Proxy(x, {

3 unary: function(target, op) { return unaryOps[op](target) },

4 left: function(target, op, r) { return binaryOps[op](target, r) },

5 right: function(target, op, l) { return binaryOps[op](l, target) },

6 get: function(target, name) { return target[name] },

7 set: function(target, name, val) { return target[name] = val },

8 apply: function(target, thisArg, argsList) {

9 return target.apply(thisArg, argsList)

10 }

11 });

12 }

13

14 var unaryOps = {

15 "-": function(x) { return -x },

16 "!": function(x) { return !x },

17 // etc. for all unary ops

18 };

19 var binaryOps = {

20 "+": function(x, y) { return x + y },

21 "-": function(x, y) { return x - y },

22 // etc. for all binary ops

23 };
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Figure 7.4: Tainting Proxy Pt. 1

1 var unproxy = new WeakMap();

2 function taint(x) {

3 if (isTainted(x)) { return x; }

4 var handler = {

5 // store the original untainted value for later

6 originalValue: x,

7 unary: function(target, op, operand) {

8 return taint(unaryOps[op](target));

9 },

10 left: function(target, op, right) {

11 return taint(binaryOps[op](target, right));

12 },

13 right: function(target, op, left) {

14 return taint(binaryOps[op](left, target));

15 },

16 get: function(target, name) {

17 return taint(target[name]);

18 },

19 set: function(target, name, val) {

20 return target[name] = taint(val);

21 },

22 apply: function(target, thisArg, argsList) {

23 return taint(target.apply(thisArg, argsList));

24 }

25 };

26 var p = new Proxy(x, handler);

27 unproxy.set(p, handler)

28 return p;

29 }
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Figure 7.5: Tainting Proxy Pt. 2

1 function isTainted(x) {

2 // a value is tainted if it’s in the unproxy map

3 if (unproxy.has(x)) {

4 return true;

5 }

6 return false;

7 }

8

9 function untaint(value) {

10 if (isTainted(value)) {

11 // pulls the value out of its tainting proxy

12 return unproxy.get(value).originalValue;

13 }

14 return value;

15 }
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a proxy that behaves much like x, in that all traps first perform the corresponding
operation on x but then taint the result. Each tainting proxy is stored in an unproxy

map, so that tainted proxies can be recognized by the untaint and isTainted functions.
A value is tainted if it is one of these tainting proxies and is untainted otherwise. To
untaint values (after they have been appropriately sanitized), the handler record in the
tainting proxy keeps the original value in the originalValue field, so that it can be later
returned by untaint.

Based on these definitions, tainted values now propagate through all primitive
operations of the language. For example, 4 + taint(5) evaluates to a tainted 9, that
is, a tainting proxy whose underlying value is 9.

7.1.3 Complex Numbers

An often-requested feature of a programming language is the ability to intro-
duce additional numeric types beyond what are provided in the language implementa-
tion, and to manipulate these additional types using traditional operator syntax. In
many languages, this kind of extension is difficult. For example, Java provides Bignums,
but only as a library with awkward method invocation syntax, and it does not provide
rationals, complex numbers, or decimal floating points.

Figures 7.6 and 7.7 illustrates how to add additional numeric type, namely
complex numbers. The function makeComplex takes as input the two components of
a complex number, and creates a proxy that dispatches unary and binary operations
appropriately. For binary operations, the left trap first checks if the right argument
right is a ordinary number or a complex number. If right is complex, then we pass
its real and imaginary components (extracted from right’s handler) to the appropriate
function in the complexBinOps table. Otherwise we assume that right is a real number
and pass 0 as the imaginary component to the complexBinOps table function. The right

trap is simpler, since its left argument is never complex.
The example implementation also defines the variable i, from which client code

can conveniently construct arbitrary complex numbers, for example
1.0 + (1.0 * i)

As mentioned in the introduction, virtual values enable compositional language
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Figure 7.6: Complex Numbers Proxy Pt. 1

1 var unproxy = new WeakMap();

2 function makeComplex(real, img) {

3 var handler = {

4 real: real,

5 img: img,

6 unary: function(target, op) {

7 return complexUnaryOps[op](real, img);

8 },

9

10 left: function(target, op, right) {

11 var rhandler = unproxy(right, key);

12 if (rhandler) {

13 return complexBinOps[op](real, img, rhandler.real, rhandler.img);

14 } else {

15 return binaryOps[op](real, img, right, 0);

16 }

17 },

18 right: function(target, op, left) {

19 return binaryOps[op](left, 0, real, img);

20 }

21 };

22 var p = new Proxy({}, handler);

23 unproxy.set(p, handler);

24 return p;

25 }
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Figure 7.7: Complex Numbers Proxy Pt. 2

1 var complexUnaryOps = {

2 "-": function(real, img) {

3 return makeComplex(-real, -img);

4 }

5 // . . .

6 };

7

8 var complexBinOps = {

9 "+": function(lReal, lImg, rReal, rImg) {

10 return makeComplex(lReal + rReal, lImg + rImg);

11 },

12 // . . .

13 };

14

15 function isComplex(value) {

16 if(unproxy.has(value)) {

17 return true;

18 }

19 return false;

20 }

21

22 var i = makeComplex(0, 1);
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extension. For example, both the complex number extension and the tainting extension
can be used:
var n = taint(1.0 + (1.0 * i));

if (isTainted(42 * n)) {

// handle a tainted complex number

}

Note that proxies are not a “silver bullet” for compositionality. In particular,
proxies use a double dispatch protocol for overloading binary operators. Consequently,
two independent proxy-based extensions, say Complex and Rational, may not be com-
posable, since neither implementation knows how to add a complex and a rational
number. Generic functions, as in CLOS [Kiczales et al., 1991] and elsewhere, provide
more flexibility but with some additional complexity.

7.1.4 Dynamic Units of Measure

Several type systems (see for example, [Kennedy, 1997]) have been proposed
to track units of measure, such as meters or seconds, and to avoid the confusion of
units that caused the Mars Climate Orbiter mishap [Stephenson et al., 1999]. We use
the term quantity to mean a floating point number annotated with zero or more units
of measure, each of which may have an associated integer multiplicity or index (as in
second−2). Thus, an example quantity is 9.81 meters second−2.

Proxies provide a convenient means to track units dynamically, as illustrated
in Figures 7.8 and 7.93. Each quantity is represented as a chain of proxies, terminating
in a floating point number. Each proxy handler contains a unit of measure, an integer
index, and an underlying value (the next proxy in the chain, or a floating point number).
The function makeQuantity creates these proxies, ensuring that each proxy has a non-
zero index, and that the proxy chain is kept in lexicographic ordering of units with at
most one proxy for each unit (i.e., no duplicates).

Unary and binary operators on a quantity propagate down the proxy chain
to the underlying numbers, provided the units are appropriately compatible. In par-
ticular, "+" requires that its arguments have identical units by calling the function

3For simplicity, this implementation does not support dimensions (such as mass), but only units of
measure (such as kilograms).
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Figure 7.8: Units Proxy Pt. 1

1 var unproxy = new WeakMap();

2 function makeQuantity(unitName, index, value) {

3 var handler = unproxy.get(value);

4 if (index === 0) return n;

5 if (handler) {

6 if (handler.unit === unitName) { // same unit avoid duplicates

7 return makeQuantity(unitName, handler.index + index, handler.value);

8 } else if (handler.unit > unitName) { // keep the proxies ordered

9 return makeQuantity(handler.unit, handler.index,

10 makeQuantity(unitName, index, handler.value));

11 }

12 }

13 var handler = {

14 unit: unitName,

15 index: index,

16 value: value,

17 unary: function(target, op) {

18 return unaryOps[op](unitName, index, value);

19 },

20 left: function(target, op, right) {

21 return leftOps[op](unitName, index, value, right);

22 },

23 right: function(target, op, left) {

24 return rightOps[op](unitName, index, value, left);

25 }

26 };

27 var p = new Proxy({}, handler);

28 unproxy.set(p, handler);

29 return p

30 }
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Figure 7.9: Units Proxy Pt. 2

1 var unaryOps = {

2 "-": function(unitName, index, value) {

3 return makeQuantity(unitName, index, -value);

4 },

5 // . . .

6 };

7 var leftOps = {

8 "+": function(unit, index, value, right) {

9 return makeQuantity(unit, index, (value + dropUnit(unit, index, right)));

10 },

11 // . . .

12 };

13 var rightOps = {

14 "+": function(unit, index, value, left) {

15 throw new Error("Incompatible types");

16 },

17 // . . .

18 };

19 function dropUnit(unit, index, value) {

20 var handler = unproxy.get(value);

21 if(handler) {

22 if (handler.unit === unit && handler.index === index) {

23 return handler.value;

24 }

25 }

26 }

27 function makeUnit(unit) {

28 return makeQuantity(unit, 1, 1);

29 }
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dropUnit(unit, index, right), which ensures that the right argument right has the
unit unit with index index, and returns the unwrapped version of right. The makeUnit

function can be used by client code to create desired units of measure, as in:
1 var meter = makeUnit("meter");

2 var second = makeUnit("second");

3 var g = 9.81 * meter / second / second;

4 g + 1 // dynamic unit mismatch error

7.1.5 Handling test, geti, and seti

In prior work [Austin et al., 2011] we presented a more general form of the
virtual values in this chapter that included three more traps not shown here: test,
geti, and seti.

The test trap corresponded to a proxy being used in a conditional (e.g., the
operation if (p) { /* . . . */ } would invoke the test trap on p’s handler). Implement-
ing test is relatively straightforward since we can use macros to rewrite if statements
just like we were able to rewrite the primitive operators:

1 let if = macro {

2 rule { ( $cond . . . ) { $body . . . } } => {

3 if (test($cond . . .)) {

4 $body . . .

5 }

6 }

7 }

The test function can then dispatch to the proxy handlers test trap:
1 function test(cond) {

2 if (unproxy.has(cond)) {

3 return unproxy.get(cond).test(cond);

4 }

5 return cond;

6 }

The geti and seti are more interesting and present a challenge to implement
and highlight an important area of future work for sweet.js.

These traps correspond to their proxy being used in the index of an object get
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or set. For example, if p is a proxy and o is any normal object, then the operation o[p]

would invoke the geti trap on p.
While the other traps can be implemented by either custom operators or a

simple macro to override a standard JavaScript form like if, in order to implement the
geti/seti traps we would need some way to transform syntax of the form obj[p] into
geti(p, obj), which is not currently possible.

While we cannot currently do this kind of expansion, sweet.js could take inspi-
ration from Racket’s design of implicit forms4. Implicit forms in Racket are syntax forms
like #%app, which corresponds to function calls. In Racket the s-expression (foo a b)

is transformed into the implicit form (#%app foo a b) before the function call actually
takes place. Racket’s module system allows a programmer to install a syntax trans-
former associated with a particular implicit form, changing them different meaning of,
for example, function application within a particular module.

Internally sweet.js already uses an analogue of implicit forms in the terms
produced from enforestation. A computed object lookup (e.g., o[p]) is enforested to
a corresponding term. In the future, sweet.js could add the ability to manipulate en-
forested terms in a similar way to Racket’s implicit forms.

Since we cannot currently implement the geti/seti traps, what does that mean
for the virtual values extension from the previous sections? If we just use the design
described so far it means that if a virtual value created from our rewriting approach is
used as a key in a property get or set it will fail:

1 var p = new Proxy(1, { /*..*/ });

2 var l = [1,2,3];

3 l[p] // undefined

This happens because p is still being represented as an object and property
lookup uses the string representation of p (by default "[object Object]"). We can
address this for primitive values by changing the proxy constructor to include a toString

method on the dummy object we proxy:
1 // revised proxy constructor

2 function Proxy(val, handler) {

3 var p;

4http://docs.racket-lang.org/guide/module-languages.html#%28part._implicit-forms%29
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4 if (typeof val !== ’object’) {

5 p = new ESProxy({

6 // return the string representation of the

7 // original value

8 toString: function() { return val + ""; }

9 }, handler);

10 } else {

11 p = new ESProxy(val, handler);

12 }

13 unproxy.set(p, handler);

14 return p;

15 }

The JavaScript environment will call the toString method when the proxy is
used in a property lookup.

This approach handles the immediate problem of property lookup when prox-
ying a primitive value but it does not give the proxy control over how to represent the
string. We can address this by adding another trap in the handler stringRepr:

1 // revised proxy constructor

2 function Proxy(val, handler) {

3 var p;

4 if (typeof val !== ’object’) {

5 p = new ESProxy({

6 // return the string representation of the

7 // original value

8 toString: function() { return handler.stringRepr(val); }

9 }, handler);

10 } else {

11 p = new ESProxy(val, handler);

12 }

13 unproxy.set(p, handler);

14 return p;

15 }

This change allows us to cleanly implement the identity and lazy evaluation
extensions. Complex numbers and dynamic units of measure are not affected since they
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do not make sense as a key to an object.
The extension for which this loss in functionality presents an issue is tainting.

If a value t is a tainted proxy, then the operation o[t] should result in another tainted
value but this taint propagation is not possible without the geti and seti traps.

7.2 Principles of Design

Bracha and Ungar propose three design principles for reflective APIs [Bracha
and Ungar, 2004], namely encapsulation, stratification, and ontological correspondence.

Proxies satisfy the principle of encapsulation, since the proxy API does not
expose details regarding the underlying implementation of the language.

Proxies also satisfy the principle of stratification, since there is a clear distinc-
tion between base level values (both raw values and proxies), and meta-level values (the
handler for a proxy value). In particular, there is no way for a user of a proxy value
to access the underlying handler. Evaluating (proxy a h)["unary"] does not return the
unary trap function of the handler a; instead it invokes a’s get trap on the argument
"unary".

Finally, proxies satisfy the principle of ontological correspondence, since each
trap handler corresponds directly to a particular operation being performed by code on
a (virtual) data value.

7.3 Conclusion

The language extensions presented in Section 7.1 provide anecdotal evidence
that virtual values provide a flexible and useful language extension mechanism. In
addition, it is fairly straightforward to implement virtual values using sweet.js macros.

Note that while actually implementing virtual values in a JavaScript engine
such as SpiderMonkey or V8 rather than by macros would be “better” in the sense that it
would be more performant and available to more users of JavaScript, this would force us
to invest considerable engineering effort and time, since modern JavaScript engines are
tuned for performance rather than extensibility, before the design has been sufficiently
understood. The macro implementation technique allows rapid design prototyping.
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Virtual values are motivated by the rich proliferation of research on various
kinds of wrappers and proxies, including higher-order contracts [Findler and Felleisen,
2002, Findler and Blume, 2006], language interoperation via proxies [Gray et al., 2005],
and hybrid and gradual typing [Siek and Taha, 2007, Flanagan, 2006] and space-efficient
gradual typing [Siek and Wadler, 2010]. It is possible that virtual values may allow some
of this research to be performed by experimenting within a language with virtual values,
rather than by designing new languages and implementations.
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Chapter 8

Design and Related Work

Macro systems have many (often competing) design goals. For example, we
might want our macro system to be easy to learn but also be expressive enough to
perform every desired syntactic transformation, making the system harder to learn. A
list of potential design goals for macro systems include:

• Composability

• Correctness

• Expressiveness

• Declarativity

• Easy to learn

• Easy to reason about

• Full syntactic abstraction

The design goals listed here do not have a precise definition, rather they are
suggestive along a spectrum. For example, consider composability, which means that
two macros written by independent authors will work correctly when used in the same
program. Composability is not a binary condition, rather it is a suggestive metric that
is used in comparison to other systems. For example, the C [Harbison and Steele, 1984]
preprocessor (CPP) provides macros that are not hygienic so two CPP macros can clash
if they both inadvertently use the same names for bindings. In contrast, Scheme and
sweet.js macros are hygienic so this kind of composability failure will not occur.
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While the design of sweet.js has been guided by many goals, three stand out in
particular: declarative macro definitions, composability, and full syntactic abstraction.

8.1 Declarative Definitions

The goal of providing declarative definitions has driven the design of the pat-
tern language for macro declarations along with the use of enforest to provide pattern
classes. In Scheme, declarative definitions has a long history going back to the macro-by-
example [Kohlbecker and Wand, 1987] style macros where rather than write procedures
to manipulate s-expressions directly macro authors could write declarative patterns.

Sweet.js, following Honu [Rafkind and Flatt, 2012], extends the macro-by-
example design by using enforestation to provide pattern classes that allow macro au-
thors to pattern match on grammar productions. Pattern classes free macro authors
from reasoning about how to match different kinds of syntax and allows them to focus
on the structure of their macros.

As described in Chapter 2, sweet.js also provides the ability for macro authors
to define custom pattern classes via the invoke mechanism. The invoke mechanism
allows programmers to extend the pattern language in a declarative manner.

The invoke mechanism is a simplified version of Racket’s syntax-parse

[Culpepper and Felleisen, 2010]. The syntax-parse form in Racket allows macro au-
thors to create robust declarative patterns with expressive error handling. In sweet.js,
invoke currently provides macro authors the ability to extend the pattern language, but
without the more powerful error handling features of syntax-parse.

8.2 Composability

The design goal of composability provides the ability for macros written by
independent authors to coexist. Composable macros are macros which work correctly
when used within another macro.

There are two primary tools that sweet.js uses to achieve composability: hy-
giene, which provides composable bindings and was discussed in Chapter 5, and expan-
sion order, which give control to the “correct” macro.
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Expansion order is a point often left implicit in discussions of macro systems.
By expansion order I mean the order in which macros are invoked when a series of
macros are nested. Consider:

1 m1 {

2 m2 {

3 m3 {

4 . . .

5 }

6 }

7 }

There are two possible choices, either outside-in (m1 is invoked first) or inside-
out (m3 is invoked first). Both Racket and sweet.js choose outside-in. This choice allows
the outer macro to manipulate nested macros before they are expanded.

While this choice is important, both Racket and sweet.js have tools to invert
expansion order when necessary. Racket has the function local-expand (formalized
in [Flatt et al., 2012]) which allows a syntax-case macro to force expansion on its
subforms1. In sweet.js, when a macro uses a pattern class, such as :expr to match
an expression, enforestation essentially does a local-expand until an expression can be
matched.

8.3 Full Syntactic Abstraction

The full syntactic abstraction design goal is what allows sweet.js to build out
syntactic features from future versions of JavaScript like the ES2015 macros described
in Chapter 2. The goal here is to allow macro authors to build any syntactic form
as a macro; a user of a sweet.js macro should not have to know that a given form is
implemented as a macro.

This goal is not shared by all macro systems. For example, invocations of a
macro in both template Haskell [Sheard and Jones, 2002] (via the syntax $( . . .)) and
Rust [Matsakis and Klock, 2014] (via the syntax macroName!) are distinguished from
other syntactic forms. This difference demonstrates a divergent design philosophy, one

1sweet.js also provides preliminary support for local-expand
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in which macros are seen as an aid to address syntactic repetition (Template Haskell
and Rust) and the other as a tool for language evolution (Racket and sweet.js).

Beyond not distinguishing syntactically between macro forms and builtin
forms, Racket and sweet.js differ primarily in the kinds of syntactic forms that must be
handled by the macro system. To a close approximation, Racket has a single syntactic
form (an s-expression) whereas sweet.js must address many different forms (syntax with
a prefix name such as if or for, operators with precedence like + etc.).

8.3.1 Infix Macros

Infix macros were motivated by the ES2015 arrow function use-case. While
powerful and necessary to successfully enable macros that could implement the new
ES2015 forms, infix macros are complicated to reason about because of their asymmetric
pattern matching. In my formalism only full terms in the prefix can be matched against
though the actual implementation loosens this restriction somewhat for certain special
cases. It is an open question if a different design could lead to a more reasonable infix
macro implementation.

8.3.2 Implicit forms

An often requested feature2 is to allow macros to match against newlines and
other whitespace. This feature is motivated by the desire to implement syntax forms
with significant whitespace inspired by languages like CoffeeScript and Python.

Overloading whitespace is not a new idea [Stroustrup, 1998]. A promising av-
enue for sweet.js to pursue is the approach taken by Racket and Fortress [Allen et al.,
2005], which use implicit forms to represent, for example, the juxtaposition of two iden-
tifiers. Macros could then be extended to take advantage and override the behavior of
implicit forms. In addition to whitespace, implicit forms could also be used to imple-
ment the geti and seti traps for virtual values by allowing macro authors to override
the computed property (foo[bar]) form.

2e.g., https://github.com/mozilla/sweet.js/issues/55
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8.4 Discussion

The experience of sweet.js suggests two considerations in the design of macro
systems for languages with complex grammars. One consideration is how languages can
and should handle lexical ambiguities, and the other is how to approach the goal of full
syntactic abstraction.

Note that lexical ambiguities are not unique to JavaScript. The grammar of
C and C++, for example, distinguishes two kinds of lexical identifiers: variable names
and type names. This distinction cannot be resolved lexically, and C/C++ parsers
requires additional context to disambiguate [McKeeman, 1991]. Perl shares the same /

ambiguity with JavaScript [PerlMonks].
Since lexical ambiguities often arise in complex grammars, the experience of

sweet.js raises two points worth considering. Firstly, for language designers building
new languages, it is worth keeping in mind that introducing lexical ambiguities involves
additional tradeoffs than simply the design of the lexer and parser for that language.
In particular, allowing ambiguities to creep into the grammar will potentially influence
tools, such as a macro system, that work over the lexical structure in isolation (i.e.,
without the context provided by the parser defined over a fixed grammar). Secondly, for
languages that already have lexical ambiguities, the experience of sweet.js suggests that
it might still be possible to resolve those ambiguities. Resolving ambiguities involves a
fair amount of work to determine a correct prefix, but since this dissertation has shown
it can be done for JavaScript it seems likely that it can also be done for other languages
as well.

Beyond lexical ambiguities, an additional consideration for macro systems is
how to address full syntactic abstraction. Note that not all macro systems need to or
will be designed with the goal full syntactic abstraction. For example, both Template
Haskell and Rust have intentionally chosen to build their macro systems in ways that
are counter to the goal of full syntactic abstraction.

However, for macro systems that want to achieve some form of full syntactic
abstraction, the experience of sweet.js suggests a few areas that are worth exploring
further. In particular, the enforestation technique of Honu [Rafkind and Flatt, 2012] is
powerful. It enables declarative pattern matching along with the ability to override and
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define new operators.
Beyond the basic enforestation algorithm the experience of sweet.js also sug-

gests the need to support more flexible syntactic forms. For a language like Racket
where all syntactic forms are prefixed by a distinguishing identifier, prefix macros are
sufficient. However, in languages with more complex grammars, not all syntactic forms
contain distinguishing prefixes. For example, in JavaScript arrow functions cannot be
implemented with a prefix macro. Sweet.js provides support for these more flexible
syntactic forms via infix macros.

Finally, the experience of building virtual values with sweet.js macros illumi-
nated the need for a feature like implicit forms. Implicit forms allow a macro system
to override the meaning of syntactic forms that do not even contain a distinguishing
identifier.

8.5 Related Work

Syntactic abstraction facilities have long been a part of the design of program-
ming languages. Some systems, such as the C preprocessor [Harbison and Steele, 1984]
and LaTeX [Lamport, 1994], work over just flat token streams.

More powerful systems require additional structure and can be roughly broken
down into two groups—those that manipulate semi-structured data such as s-expressions
in Lisp and Scheme [Clinger, 1991, Dybvig et al., 1992] and those that manipulate ASTs
[Weise and Crew, 1993] or provide hooks to extend the grammar [Cardelli et al., 1994].

8.5.1 Macro Systems

Macros have been extensively used and studied in Lisp [Foderaro et al., 1983,
Pitman, 1980] and related languages for many years. Scheme in particular has embraced
macros, pioneering the development of declarative definitions [Kohlbecker and Wand,
1987] and working out the hygiene conditions for term rewriting macros (rule macros)
[Clinger, 1991] and procedural macros (case macros) [Dybvig et al., 1992] that enable
true composability. In addition there has been work to integrate procedural macros
and module systems [Flatt, 2002, Ghuloum and Dybvig, 2007]. Racket takes it even

132



further by extending the Scheme macro system with deep hooks into the compilation
process [Tobin-Hochstadt et al., 2011, Flatt et al., 2012] and robust pattern specifications
[Culpepper and Felleisen, 2010].

In addition, there are a number of macro systems for languages with more
traditional syntax that are not fully delimited. As mentioned before, sweet.js is most
closely related to Honu [Rafkind and Flatt, 2012, Rafkind, 2013]. In contrast with Honu,
which does not include regular expression literals, sweet.js solves the reader ambiguity
problem for JavaScript and introduce infix macros.

Macro systems that use a similar technique as Honu include Fortress [Allen
et al., 2009] and Dylan [Bachrach et al., 1999], but they only provide support for term
rewriting macros (our rule macros). Dylan’s auxiliary rules are similar to our invoke

pattern class. Nemerle [Skalski et al., 2004] also uses a similar technique but does not
allow local definitions of macros.

The Marco system [Lee et al., 2012] is an interesting alternative approach that
presents a cross-language macro system. Rather than tightly integrate the macro system
with a specific language, Marco provides a separate macro definition language that can
compile to multiple languages. While this approach provides generality it sacrifices
language specific expressiveness (e.g., name clashes are errors in their system while they
are just renamed in sweet.js).

Recently work has even begun on formalizing the hygiene condition for Scheme
[Adams, 2015]. Prior presentations of hygiene have either been operational [Dybvig
et al., 1992] or restricted to a typed subset of Scheme that does not include syntax-case

[Herman, 2010, Herman and Wand, 2008].

8.5.2 Extensible Syntax

There are a variety of systems that provide syntactic extension via techniques
related to extensible grammars [Cardelli et al., 1994]. Some systems such as SugarJ
[Erdweg et al., 2011], OMeta [Warth and Piumarta, 2007], Xtc [Grimm, 2006], Xoc
[Cox et al., 2008], and Polyglot [Nystrom et al., 2003] provide extensible grammars but
require the programmer to reason about parser details. Multi stage systems such as
Mython [Riehl, 2009] and MetaML [Taha and Sheard, 1997, Sheard et al., 2000] can
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also be used to create macros systems like MacroML [Ganz et al., 2001]. Systems like
Stratego [Visser, 2003] transforms syntax using its own language, separate from the host
language. Metaborg [Bravenboer and Visser, 2004] and SugarJ [Erdweg et al., 2011] are
syntax extension facilities built on top of Stratego.

To the best of my knowledge the only system besides sweet.js that provides
syntactic abstraction facilities in JavaScript is ExJS [Wakita et al., 2014]. ExJS is a
hygienic macro system for JavaScript based on a staged parsing architecture (rather than
a more direct manipulation of syntax as in sweet.js). ExJS supports pattern macros
(similar to rule macros in sweet.js) but the staged parsing approach does not enable
the more general procedural macros (the case macros in sweet.js).

8.5.3 Template Meta-Programming

C++ templates [Alexandrescu, 2001] are a powerful compile time meta pro-
gramming facility for C++. In contrast to C++ templates sweet.js provides more
syntactic flexibility in the definable syntactic forms along with the ability to define
transformations in the host language rather than the just the template language.

Template Haskell [Sheard and Jones, 2002] makes a tradeoff by forcing the
macro call sites to always be demarcated. The means that macros are always a second
class citizen; macros in Haskell cannot seamlessly build a language on top of Haskell in
the same way that Racket and sweet.js can.

8.6 Conclusion

This dissertation has presented sweet.js, a hygienic macro system for JavaScript.
Sweet.js includes a novel reader for JavaScript that correctly separates the lexing and
parsing phases of JavaScript. Sweet.js extends the enforestation technique from Rafkind
[Rafkind and Flatt, 2012, Rafkind, 2013] to address full JavaScript and includes infix
macros that enable the implementation of syntactic forms in ES2015.

This dissertation has presented a formalization of macro expansion that in-
cludes a treatment of hygiene adapted from Flatt [Flatt, 2015] for the JavaScript setting.
In addition, I have demonstrated the effectiveness of sweet.js by implementing two kinds
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of applications: (1) a contract system that shows the ability of sweet.js to implement
a domain specific language and (2) virtual values that show how sweet.js can be used
for a deeper kind of language extension. These applications of sweet.js also identify and
illustrate areas of future work for sweet.js or any macro system that attempts to provide
full syntactic abstraction.

135



Bibliography

M. D. Adams. Towards the Essence of Hygiene. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2015, 2015.

A. Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns
Applied. Addison-Wesley, Apr. 2001.

E. Allen, D. Chase, J. Hallett, and V. Luchangco. The Fortress Language Specification.
2005.

E. Allen, R. Culpepper, and J. D. Nielsen. Growing a syntax. Proceedings of Workshop
on Foundations of Object-Oriented Languages, 2009.

T. H. Austin, T. Disney, and C. Flanagan. Virtual Values for Language Extension.
In OOPSLA ’11: Proceedings of the 2011 ACM international conference on Object
oriented programming systems languages and applications, Oct. 2011.

J. Bachrach, K. Playford, and C. Street. D-expressions: Lisp power, Dylan style. Style
DeKalb IL, 1999.

E. Barzilay, R. Culpepper, and M. Flatt. Keeping It Clean with Syntax Parameters. In
Proceedings of the Workshop on Scheme and Functional Programming, 2011.

A. Bawden and J. Rees. Syntactic Closures. In Proceedings of the 1988 ACM conference
on LISP and functional programming - LFP ’88, 1988.

G. Bracha and D. Ungar. Mirrors: Design Principles for Meta-Level Facilities of Object-
Oriented Programming Languages. In OOPSLA, 2004.

136



M. Bravenboer and E. Visser. Concrete Syntax for Objects: Domain-Specific Language
Embedding and Assimilation Without Restrictions. OOPSLA, 2004.

L. Cardelli, F. Matthes, and M. Abadi. Extensible Syntax with Lexical Scoping. 1994.

M. Carrillo, J. G. Molina, E. Pimentel, and I. Repiso. Design by Contract in Smalltalk.
Journal of Object Oriented Programming, 1996.

W. Clinger. Macros That Work. In Proceedings of the 18th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming languages - POPL ’91, 1991.

R. Cox, T. Bergan, A. T. Clements, F. Kaashoek, and E. Kohler. Xoc, An Extension-
Oriented Compiler for Systems Programming. In ASPLOS XIII: Proceedings of the
13th international conference on Architectural support for programming languages and
operating systems, 2008.

R. Culpepper and M. Felleisen. Fortifying Macros. ICFP, 2010.

T. V. Cutsem and M. S. Miller. Proxies: Design Principles for Robust Object-oriented
Intercession APIs. In Dynamic Languages Symposium, 2010.

C. Dimoulas, R. B. Findler, C. Flanagan, and M. Felleisen. Correct Blame for Contracts:
No More Scapegoating. POPL, 2011.

T. Disney, C. Flanagan, and J. McCarthy. Temporal Higher-Order Contracts. In ICFP
’11: Proceedings of the 16th ACM SIGPLAN international conference on Functional
programming, 2011.

R. K. Dybvig, R. Hieb, and C. Bruggeman. Syntactic Abstraction in Scheme. Lisp and
Symbolic Computation, 1992.

S. Erdweg, L. C. L. Kats, T. Rendel, C. Kästner, K. Ostermann, and E. Visser. SugarJ:
Library-Based Language Extensibility. In OOPSLA ’11: Proceedings of the ACM in-
ternational conference companion on Object oriented programming systems languages
and applications companion, 2011.

N. Faubion. The sparkler project. URL https://github.com/natefaubion/sparkler.

137

https://github.com/natefaubion/sparkler


R. B. Findler and M. Blume. Contracts as Pairs of Projections. In International Sym-
posium on Functional and Logic Programming. 2006.

R. B. Findler and M. Felleisen. Contracts for Higher-Order Functions. In Proceedings
of the seventh ACM SIGPLAN international conference on Functional programming,
2002.

C. Flanagan. Hybrid Type Checking. In Symposium on Principles of Programming
Languages, 2006.

M. Flatt. Composable and Compilable Macros: You Want It When? In ICFP ’02:
Proceedings of the seventh ACM SIGPLAN international conference on Functional
programming, 2002.

M. Flatt. Binding as Sets of Scopes: Notes on a new model of macro expansion for
Racket, 2015. URL http://www.cs.utah.edu/~mflatt/scope-sets-5/.

M. Flatt, R. Culpepper, D. Darais, and R. B. Findler. Macros that Work Together:
Compile-Time Bindings, Partial Expansion, and Definition Contexts. Journal of
Functional Programming, 2012.

J. K. Foderaro, K. L. Sklower, and K. Layer. The FRANZ Lisp Manual. University of
California Berkeley, California, 1983.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley,
Boston, MA, 1995. ISBN 0201633612.

S. E. Ganz, A. Sabry, and W. Taha. Macros as Multi-Stage Computations: Type-Safe,
Generative, Binding Macros in MacroML. ICFP, 2001.

A. Ghuloum and R. K. Dybvig. Implicit Phasing for R6RS Libraries. ICFP ’07 Proceed-
ings of the 12th ACM SIGPLAN international conference on Functional programming,
2007.

A. Goldberg and D. Robson. Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, 1983. ISBN 0-201-11371-6.

138

http://www.cs.utah.edu/~mflatt/scope-sets-5/


K. E. Gray, R. B. Findler, and M. Flatt. Fine-Grained Interoperability Through Mirrors
and Contracts. In OOPSLA, 2005.

R. Grimm. Better Extensibility Through Modular Syntax. PLDI, 2006.

A. Guha, J. Matthews, R. B. Findler, and S. Krishnamurthi. Relationally-Parametric
Polymorphic Contracts. In Proceedings of the 2007 symposium on Dynamic languages
- DLS ’07, 2007.

S. P. Harbison and G. L. J. Steele. C: A Reference Manual. 1984.

D. Herman. A Theory of Typed Hygienic Macros. PhD thesis, Northeastern University,
Jan. 2010.

D. Herman. Effective JavaScript. 68 Specific Ways to Harness the Power of JavaScript.
Addison-Wesley, Nov. 2012.

D. Herman and M. Wand. A Theory of Hygienic Macros. In ESOP’08/ETAPS’08:
Proceedings of the Theory and practice of software, 17th European conference on Pro-
gramming languages and systems, 2008.

R. Hinze, J. Jeuring, and A. Löh. Typed Contracts for Functional Programming. In
Functional and Logic Programming. 2006.

E. C. M. A. International. ECMA-262 ECMAScript Language Specification. ECMA
(European Association for Standardizing Information and Communication Systems),
5.1 edition, 2011. URL http://www.ecma-international.org/publications/

standards/Ecma-262.htm.

E. C. M. A. International. ECMA-262 ECMAScript Language Specification. ECMA
(European Association for Standardizing Information and Communication Sys-
tems), 6 edition, 2015. URL http://www.ecma-international.org/publications/

standards/Ecma-262.htm.

M. Karaorman, U. Hölzle, and J. Bruno. jContractor: A Reflective Java Library to
Support Design by Contract. In Meta-Level Architectures and Reflection, 1999.

139

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm


A. Kennedy. Relational Parametricity and Units of Measure. In Principles of Program-
ming Languages, 1997.

G. Kiczales. Aspect-Oriented Programming. ACM Computing Surveys, 1996. doi:
http://doi.acm.org/10.1145/242224.242420.

G. Kiczales, J. D. Rivieres, and D. G. Bobrow. The Art of the Metaobject Protocol. The
MIT Press, July 1991. ISBN 0262610744.

E. Kohlbecker, D. P. Friedman, M. Felleisen, and B. Duba. Hygienic Macro Expansion.
In Proceedings of the 1986 ACM conference on LISP and functional programming,
LFP ’86, 1986.

E. E. Kohlbecker and M. Wand. Macro-By-Example: Deriving Syntactic Transforma-
tions from their Specifications. In Proceedings of the 14th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages - POPL ’87, 1987.

L. Lamport. Latex: A Document Preparation System. Addison-wesley, 1994.

B. Lee, R. Grimm, M. Hirzel, and K. S. McKinley. Marco: Safe, Expressive Macros
for Any Language. In ECOOP’12: Proceedings of the 26th European conference on
Object-Oriented Programming, 2012.

J. Long. The ES6 Macros Project. URL https://github.com/jlongster/es6-macros.

N. D. Matsakis and F. S. Klock, II. The Rust Language. In Proceedings of the 2014
ACM SIGAda Annual Conference on High Integrity Language Technology, 2014. doi:
10.1145/2663171.2663188. URL http://doi.acm.org/10.1145/2663171.2663188.

Matthew Flatt and PLT. Reference: Racket. Technical report, PLT Design Inc., 2010.
http://racket-lang.org/tr1/.

K. McFarlane. Design by Contract Framework. The Code Project, 2002.

W. McKeeman. Resolving Typedefs in a Multipass C Compiler. The Journal of C
Language Translation, 1991.

B. Meyer. Eiffel: The Language. Prentice Hall, 1992.

140

https://github.com/jlongster/es6-macros
http://doi.acm.org/10.1145/2663171.2663188
http://racket-lang.org/tr1/


L. A. Meyerovich, A. P. Felt, and M. S. Miller. Object Views: Fine-Grained Sharing in
Browsers. In Proceedings of the WWW 2010, Raleigh NC, USA, 2010.

M. S. Miller and T. V. Cutsem. Catch-All Proxies. http://wiki.ecmascript.org/

doku.php?id=harmony:proxies.

N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An Extensible Compiler
Framework for Java. Compiler Construction, 2003.

Paul Hudak and Simon Peyton-Jones and Philip Wadler (eds.). Report on the Pro-
gramming Language Haskell: A Non-Strict, Purely Functional Language Version 1.2.
SIGPLAN Notices, 1992.

PerlMonks. On Parsing Perl. http://www.perlmonks.org/?node_id=44722. URL
http://www.perlmonks.org/?node_id=44722.

K. M. Pitman. Special Forms in Lisp. In Proceedings of the 1980 ACM conference on
LISP and functional programming - LFP ’80, 1980.

J. Rafkind. Syntactic Extension for Languages with Implicitly Delimited and Infix Syn-
tax. PhD thesis, University of Utah, 2013.

J. Rafkind and M. Flatt. Honu: Syntactic Extension for Algebraic Notation Through
Enforestation. In Generative Programming and Component Engineering, GPCE’12,
2012.

J. Riehl. Language Embedding and Optimization in Mython. DLS, 2009.

D. S. Rosenblum. A Practical Approach to Programming with Assertions. IEEE Trans-
actions on Software Engineering, 1995.

T. Sheard and S. L. P. Jones. Template Meta-Programming for Haskell. SIGPLAN
Notices, 2002.

T. Sheard, Z. Benaissa, and M. Martel. Introduction to Multistage Programming using
MetaML. Revision, 2000.

J. Siek and W. Taha. Gradual Typing for Objects. In ECOOP 2007–Object-Oriented
Programming, 2007.

141

http:// wiki.ecmascript.org/doku.php?id=harmony:proxies
http:// wiki.ecmascript.org/doku.php?id=harmony:proxies
http://www.perlmonks.org/?node_id=44722
http://www.perlmonks.org/?node_id=44722


J. G. Siek and P. Wadler. Threesomes, With and Without Blame. In POPL, 2010.

K. Skalski, M. Moskal, and P. Olszta. Meta-Programming in Nemerle. Proceedings
Generative Programming and Component Engineering, 2004.

K. D. Smith, J. J. Jewett, S. Montanaro, and A. Baxter. PEP 0318 – Decorators for
Functions and Methods. URL https://www.python.org/dev/peps/pep-0318/.

G. L. Steele. Growing a Language. Higher-Order and Symbolic Computation, 1999.

A. G. Stephenson, L. S. LaPiana, D. R. Mulville, P. J. Rutledge, F. H. Bauer, D. Folta,
G. A. Dukeman, R. Sackheim, and P. Norvig. Mars climate orbiter mishap investiga-
tion board phase 1 report. Technical report, NASA, 1999.

B. Stroustrup. Generalizing Overloading for C++2000. Technical report, AT&T Labs,
1998.

W. Taha and T. Sheard. Multi-Stage Programming with Explicit Annotations. PEPM,
1997.

S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and M. Felleisen. Languages
as Libraries. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2011, 2011.

T. Tuglular, C. A. Muftuoglu, F. Belli, and M. Linschulte. Event-Based Input Validation
Using Design-by-Contract Patterns. In 20th International Symposium on Software
Reliability Engineering, ISSRE’09., 2009.

E. Visser. Program Transformation with Stratego/XT: Rules, Strategies, Tools, and
Systems in Stratego/XT 0.9. Domain-Specific Program Generation, 2003.

K. Wakita, K. Homizu, and A. Sasaki. Hygienic Macro System for JavaScript and Its
Light-weight Implementation Framework. In ILC ’14: Proceedings of ILC 2014 on
8th International Lisp Conference, 2014.

A. Warth and I. Piumarta. OMeta: An Object-Oriented Language for Pattern Matching.
In DLS ’07: Proceedings of the 2007 symposium on Dynamic languages, 2007.

142

https://www.python.org/dev/peps/pep-0318/


D. Weise and R. Crew. Programmable Syntax Macros. In ACM SIGPLAN Notices,
1993.

143



Appendix A

Read Proof

Lemma 1 (Parse Equivalence on Nonterminals).
For all nonterminals in the grammar N , e ∈ AST, L ∈ Lexeme, P ∈ T ,

b ∈ Bool. Assume that:

• P ∈ RegexPrefixb

• P does end with the . token

• if N is Program, StmtList, or SourceElements then P = ε and b = false

• if N is an expression nonterminal (one of AssignExpr, BinaryExpr, LHSExpr,
MemberExpr, CallExpr, PrimaryExpr) then if L starts with {l or functionl then
isExprPrefix(P, b, l) = true

Then:
L = Ne ⇒ read(L, P, b) = N ′e

Proof. By induction on the derivation of Ne.

• A number of cases are straightforward and hold by induction on a subderivation.
These include:

– Rule Programe ::= SourceElementse

– Rule SourceElementse ::= SourceElemente

– Rule SourceElementse ::= Stmte
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– Rule SourceElemente ::= Functione

– Rule StmtListe ::= Stmte

– Rule AssignExpre ::= BinaryExpre

– Rule BinaryExpre ::= LHSExpre

– Rule LHSExpre ::= MemberExpre

– Rule LHSExpre ::= CallExpre

– Rule MemberExpre ::= PrimaryExpre

– Rule MemberExpre ::= Functione

• Case for rule PrimaryExpr/r/ ::= / · r · /

Note that N = PrimaryExpr and L = / · r · /.

Since P ∈ RegexPrefixb then read(/ · r · /, P, b) = /r/ and thus read(L, P, b) =
PrimaryExpr’/r/.

• Case for rule BinaryExpre / e′ ::= BinaryExpre · / · BinaryExpre′

Note that N = BinaryExpr and L = BinaryExpre · / · BinaryExpre′ . Let:

L′ = BinaryExpre

L′′ = BinaryExpre′

T = read(L′, P, b)

Then L = L′ · / ·L′′. By induction read(L′, P, b) = BinaryExpr’e. By Lemma 2,
T ∈ DividePrefixb and so

read(L′ · / · L′′, P, b)
= T · read(/, P · T, b) · read(L′′, P · T · /, b)
= T · / · read(L′′, P · T · /, b)

Since T · / ∈ RegexPrefixb and isExprPrefix(T · /, b, l) = true for all T , b, and l,
by induction

read(L′′, P · T · /, b) = BinaryExpr’e′

and thus read(L, P, b) = BinaryExpr’e / e′ .
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• Case for rule Stmte ::= AssignExpre · ; where lookahead 6= { or function

We have N = Stmt and L = AssignExpre · ;. Since from the grammar production
lookahead we know that L does not begin with { or function this case holds by
induction.

• Case for rule SourceElementse e′ ::= SourceElementse · SourceElemente′

We have N = SourceElements and L = SourceElementse · SourceElemente′ . Let:

L′ = SourceElementse

L′′ = SourceElemente′

T = read(L′, P, b)

Then L = L′ · L′′. By induction T = SourceElements’e. From our assumptions
P = ε and b = false so by Lemma 3, T ∈ RegexPrefixb and P · T ∈ RegexPrefixb

(since by definition ε · T is still in RegexPrefixb). By Lemma 5, T does not end
with a . token. Thus by induction read(L′′, P · T, b) = SourceElement’e′ and
thus read(L, P, b) = SourceElements’e e′

• Case for rule Stmtx:e ::= x · : · Stmte

Note that N = Stmt and L = x · : · Stmte. Let:

L′ = Stmte
T = read(L′, P · x · :, b)

Then L = x · : · L′. Since P · x · : ∈ RegexPrefixb by induction T = Stmt’e and
thus read(L, P, b) = Stmt’x:e.

• Case for rule Stmtif (e) e′ ::= if · ( ·AssignExpre · ) · Stmte′

Note that N = Stmt and L = if · ( ·AssignExpre · ) · Stmte′ . Let:

L′ = AssignExpre

L′′ = Stmte′

T = read(L′, ε, true)
T ′ = read(L′′, P · if · (T), b)

Then L = if·(·L′ ·)·L′′. Since from its definition isExprPrefix(ε, true, l) = true
for all l, by induction T = AssignExpr’e. From our assumptions P does not end
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with the . token, so P · if · (T) ∈ RegexPrefixb thus by induction T ′ = Stmt’e′ .
Therefore read(L, P, b) = Stmt’if (e) e′ .

• Case for rule Stmtreturn ::= return

Note that N = Stmt and L = return. Follows directly.

• Case for rule Stmtreturn e ::= return · [no line terminator here] AssignExpre · ;

Note that N = Stmt and L = returnl ·AssignExpre · ;. Let:

L′ = AssignExpre

T = read(L′, P · returnl, b)

Then L = return·L′ ·;. Since from this production rule there is no line break after
the return keyword, isExprPrefix(P · returnl, b, l) = true and P · return ∈
RegexPrefixb and and so by induction, T = AssignExpr’e. Thus read(L, P, b) =
Stmt’return e.

• Case for rule StmtListe e′ ::= StmtListe · Stmte′

We have N = StmtList and L = StmtListe · Stmte′ . Let:

L′ = StmtListe
L′′ = Stmte′

T = read(L′, P, b)

Then L = L′·L′′. By induction T = StmtList’e and by Lemma 4, T ∈ RegexPrefixb.
From our assumptions P = ε so P · T ∈ RegexPrefixb (since by definition ε · T is
still in RegexPrefixb). From Lemma 5, T does not end with a . token. Thus by
induction read(L′′, P · T, b) = Stmt’e′ and thus read(L, P, b) = StmtList’e e′ .

• Case for rule Stmt{e} ::= { · StmtListe · }

Note that N = Stmt and L = { · StmtListe · }. Let:

L′ = StmtListe
T = read(L′, ε, false)

Then L = {·L′·}. By induction T = StmtList’e and thus read(L, P, b) = Stmt’{e}.
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• Case for rule Functionfunction x (x′) {e} ::= function·x·(·x′·)·{·SourceElementse·}

Note that N = Function and L = function · x · ( · x′ · ) · { · SourceElementse · }.
Let:

L′ = SourceElementse

T = read(L′, ε, false)

Then L = function · x · ( · x′ · ) · { · L′ · }. By induction T = SourceElements’e.
Thus read(L, P, b) = Function’function x (x′) {e}.

• Case for rule PrimaryExpr{x:e} ::= { · x · : ·AssignExpre · }

Note that N = PrimaryExpr and L = {l · x · : · AssignExpre · } Let: L′ =
AssignExpre. Then L = {l · x · : · L′ · }. Since from our assumptions
isExprPrefix(P, b, l) = true then T = read(L′, x · :, true) and x · : ∈
RegexPrefixtrue and isExprPrefix(x · :, true, l′) for all l′.

So by induction T = AssignExpr’e and thus read(L, P, b) = PrimaryExpr’{x:e}.

• Case for rule PrimaryExpr(e) ::= ( ·AssignExpre · )

Note that N = PrimaryExpr and L = ( ·AssignExpre · ). Let:

L′ = AssignExpre

T = read(L′, ε, true)

Then L = ( · L′ · ). Since from its definition isExprPrefix(ε, true, l) = true for
all l, by induction T = AssignExpr’e. Thus, read(L, P, b) = PrimaryExpr’(e).

• Case for rule PrimaryExprx ::= x

Note that N = PrimaryExpr and L = x. Follows directly.

• Case for rule CallExpre(e′) ::= CallExpre · ( ·AssignExpre′ · )

Note that N = CallExpr and L = CallExpre · ( ·AssignExpre′ · ). Let:

L′ = CallExpre

L′′ = AssignExpre′

T = read(L′, P, b)
T ′ = read(L′′, ε, true)
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Then L = L′ · ( ·L′′ · ). By induction T = CallExpr’e and since from its definition
isExprPrefix(ε, true, l) = true for any l, by induction T ′ = AssignExpr’e′ . Thus,
read(L, P, b) = CallExpre(e′).

• Case for rule CallExpre.x ::= CallExpre · . · x

Note that N = CallExpr and L = CallExpre ·.·x. Holds by induction on CallExpr.

• Case for rule MemberExpre.x ::= MemberExpre · . · x

Note that N = MemberExpr and L = MemberExpre · . · x. Holds by induction on
MemberExpr.

• Case for rule AssignExpre = e′ ::= LHSExpre · = ·AssignExpre′

Note that N = AssignExpr and L = LHSExpre · = ·AssignExpre′ . Let:

L′ = LHSExpre

L′′ = AssignExpre′

T = read(L′, P, b)

Then L = L′ · = · L′′. By induction, T = LHSExpr’e. Since T · = ∈ RegexPrefixb

and isExprPrefix(T · =, b, l) = true for all T, b, l, by induction

read(L′′, P · T · =, b) = AssignExpr’e′

and thus read(L, P, b) = AssignExpr’e = e′

• Case for rule BinaryExpre + e′ ::= BinaryExpre · + · BinaryExpre′

Note that N = BinaryExpr and L = BinaryExpre · + · BinaryExpre′ . Let:

L′ = BinaryExpre

L′′ = BinaryExpre′

T = read(L′, P, b)

Then L = L′ · + · L′′. By induction read(L′, P, b) = BinaryExpr’e. Since T · + ∈
RegexPrefixb and isExprPrefix(T · +, b, l) = true for all T, b, l, by induction

read(L′′, P · T · +, b) = BinaryExpr’e′

and thus read(L, P, b) = BinaryExpr’e + e′ .
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• Case for rule CallExpre(e′) ::= MemberExpre · ( ·AssignExpre′ · )

Note that N = CallExpr and L = MemberExpre · ( ·AssignExpre′ · ). Let:

L′ = MemberExpre

L′ = AssignExpre′

T = read(L′, P, b)
T ′ = read(L′′, ε, true)

Then L = L′·(·L′′·). By induction T = MemberExpr’e and since from its definition
isExprPrefix(ε, true, l) = true for all l, by induction T ′ = AssignExpr’e′ . Thus,
read(L, P, b) = CallExpre(e′).

Lemma 2 (Binary Divide Prefix).
For all L ∈ Lexeme, P ∈ Token, b ∈ Bool, e ∈ AST. Assuming that:

• P ∈ RegexPrefixb, and

• if L starts with either {l or functionl then isExprPrefix(P, b, l) = true

Then:
read(L, P, b) = BinaryExpr’e ⇒ read(L, P, b) ∈ DividePrefixb.

Proof. By induction on the derivation of BinaryExpr’e. A few example cases are shown.
The others are similar.

• Case for rule PrimaryExpr’x ::= x

Note that read(L, P, b) = x. Holds since P · x ∈ DividePrefixb.

• Case for rule PrimaryExpr’/x/ ::= /x/

Note that read(L, P, b) = /x/.

Holds since P · /x/ ∈ DividePrefixb.

• Case for rule PrimaryExpr’{x:e} ::= {l · x · : · T · }

Note that read(L, P, b) = {l · x · : · T · }.

Since isExprPrefix(P, b, l) = true we have P · {x · : · T} ∈ DividePrefixb.
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Lemma 3 (SourceElements Regexp Prefix).
For all e ∈ AST.
SourceElements’e ∈ RegexPrefixfalse.

Proof. By induction on the derivation of SourceElements’e.

Lemma 4 (StmtList Regexp Prefix).
For all e ∈ AST.
StmtList’e ∈ RegexPrefixfalse.

Proof. By induction on the derivation of StmtList’e.

Lemma 5 (Nonterminals do not end with dot).
For all nonterminals in the grammar N ′, L ∈ Lexeme, P ∈ Token, b ∈ Bool,

e ∈ AST.
If read(L, P, b) = N ′e then read(L, P, b) does not end with the . token.

Proof. By induction on the derivation of N ′. Note that the only productions in the
grammar with . are MemberExpr’ and CallExpr’ and in both cases . does not end the
production.

Lemma 6 (read is well-founded). read is a well-founded function (at most one case
applies to a given input).

Proof. By case analysis and the fact that RegexPrefixb and DividePrefixb are disjoint.
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