
Gradual Information Flow Typing

Tim Disney and Cormac Flanagan

University of California Santa Cruz

Abstract. We present a method to support the gradual evolution of
secure scripts by formalizing an extension of the simply-typed lambda
calculus that provides information flow constructs. These constructs al-
low initially insecure programs to evolve via targeted refactoring and to
provide dynamic information flow guarantees via casts, as well as static
information flow guarantees via labeled types.

1 Introduction

Several decades of software engineering experience has demonstrated that writ-
ing “correct” software is close to impossible, due to the inherent complexity of
software systems and the fallible nature of human programmers. Consequently,
relying on security to be an emergent property of software is unwise. We ar-
gue instead that security properties, such as data confidentiality and integrity,
should be monitored and enforced by small trusted parts of the code base, with
help from the run-time system where appropriate.

In practice, programmers are initially concerned more with functionality than
with security. It is only once a system has proven useful, and has attracted users
and potential attackers, that security concerns become dominant. While it might
be preferable to address security concerns right from the start of a project, com-
petitive pressures often dictate quickly developing an initial (perhaps insecure)
system that helps clarify the requirements and gain a market foothold, and
then to evolve the system with additional features, including security guaran-
tees. Hence, we would like to support a development methodology whereby the
programmer first develops an initial, insecure system, and then incrementally
refactors the system to add data confidentiality and integrity guarantees via
information flow tracking.

Much prior work has addressed information flow security. Most of this work
has focused on static type systems such as JFlow [15], Jif [14], and others [29,
16], which involve significant up-front costs. More recent investigations explore
dynamic information flow [4, 5, 10], which requires less up-front investment but
which cannot document security properties as types.

In this paper, we explore some initial steps towards realizing the vision of
gradual evolution from untyped scripts into security typed applications. Since
prior work has addressed evolving dynamic scripts into typed code [1, 27, 12, 11],
the starting point for our development is a typed language. We explore how to
gradually extend programs in this language with security guarantees and with
security types.

To support gradual evolution of security properties, our approach provides
both static and dynamic information flow guarantees. We use dynamic informa-
tion flow tracking for all code, including conventionally typed code that has not
been refactored to express information flow properties in the type system. Our
language includes a labeling operation for marking data as private, and a cast
operation for checking the labels on data. Both operations naturally extend to
higher-order data by treating contravariant function arguments appropriately.
The cast operation may fail if applied to incorrectly-labeled data; in this case
either the term inside the cast or the context of the cast is blamed, which we
call positive and negative blame respectively.

For any program, including those without security types, our approach guar-
antees termination insensitive non-interference (TINI), which means that pri-
vate inputs cannot flow into or influence public outputs. Attempts to violate
TINI results in cast failures. We assume a label lattice for expressing data con-
fidentiality and integrity properties. For simplicity, we often use a two-element
lattice with a public or low confidentiality label (L) and a private or high confi-
dentiality label (H), but the approach generalizes to any lattice.

In addition to tracking information flow dynamically, we enrich the type
system to express invariants regarding security labels on the underlying data.
Our preservation theorem states that if a term t has type Intk, where k is a
security label, then t can only evaluate to a value nm, where n is an integer and
the label m satisfies m v k. Thus, the type system documents a conservative
upper bound on the label of the resulting value.

In our language, each value and type has an associated security label. To
support legacy code, an unlabeled value implicitly has label ⊥ (the bottom
element in the lattice) indicating that the value is not confidential. Conversely, an
unlabeled type implicitly has label>, allowing it to describe values with arbitrary
labels, since any label m satisfies m v >. In this manner, conventionally typed
code can interoperate with new precisely typed code, with casts at interfaces
between the two typing disciplines.

If the entire application has precise security types, then there is no need for
downcasts and for dynamic tracking of information flow labels. This approach
has been explored in depth in prior systems such as JFlow [15]. In contrast,
the novelty of this paper is that dynamic label tracking enables downcasts, and
avoids the need to statically document precise security types throughout the
entire application all at once. Instead, the application can gradually evolve from
(1) conventionally typed with no security guarantees, to (2) having casts and
dynamic information flow guarantees, to (3) being precisely typed with no casts
and with static information flow guarantees. Additionally, this evolution process
can stop or pause at any point in the middle, depending on engineering, eco-
nomic, and security requirements, as each intermediate step is a valid well-typed
program (albeit with different run-time guarantees).

1.1 Motivating Example

To illustrate the benefits of gradual information flow, consider the following code
fragment which deals with sensitive salary information:

let age : Int = 42
let salary : Int = 58000
let intToString : Int→ Str = . . .
let print : Str→ Unit = λs:Str. . . .
print(intToString(salary))

This code does not track the flow of sensitive information. After some embar-
rassing salary leaks, the program manager might want to “harden” the script to
limit the flow of sensitive information

In the following revised code, the labeling operation (58000 : Int V IntH)
marks data as private, and the cast (s : Str⇒p StrL) checks that data is public:

let age : Int = 42
let salary : Int = 58000: Int V IntH

let intToString : Int→ Str = . . .
let print : Str→ Unit = λs:Str. let s = (s : Str⇒p StrL) in . . .
print(intToString(salary))

The runtime system tracks the flow of information through all code. Since the
intToString library function is applied to a confidential argument, it produces
a confidential result, and so the cast inside print will fail at runtime. Thus,
independent of bugs in the rest of the code, print ensures that confidential data
is never printed.

As a next step, we wish to document and verify information flow invariants
using the type system. We begin by extending the code with explicit labels on
types. Note that IntH is the most general integer type, since these potentially
private integers can store both public and private data.

let age : IntL = 42
let salary : IntH = 58000: IntL V IntH

let intToString : Int→ Str = . . . // unrefactored module
let print : StrH → UnitH = λs:StrH . let s = (s : StrH ⇒p StrL) in . . .
print(intToString(salary))

The above code incorporates information flow types but does not yet provide
static guarantees since print accepts H values (at least statically). To pro-
vide static guarantees, we first refine print’s argument type to specify that it
only accepts public data. This refactoring requires introducing a variant of the
intToString function, called intToStringL, for handling public data, using a
cast to specify that intToString has the desired behavior of mapping public

Figure 1: λgif Syntax

ı ::= Int | Bool | Str Base Types
a, b ::= ı | A→ B Raw Types

A,B ::= ak Labeled Types
t, s ::= v | x | t s | op t | t : A V B | t : A⇒p B Terms
r ::= c | λx:A. t Raw Values

v, w ::= rk Labeled Values
k, l,m Labels
Γ ::= ∅ | Γ, x : A Typing Environment

integer inputs to public string results.

let age : IntL = 42
let salary : IntH = 58000: IntL V IntH

let intToString : Int→ Str = . . . // unrefactored module
let intToStringL : IntL → StrL = intToString : (IntH → StrH)⇒q (IntL → StrL)
let print : StrL → UnitL = λs:StrL. . . .
print(intToStringL(salary))

Using these more precise types, bugs such as print(intToStringL(salary)) now
are revealed at compile time. The programmer then corrects the code to the
intended print(intToStringL(age)), which passes both static and dynamic se-
curity checks. Note that this security typed code interoperates with the legacy
intToString module via the security interface specification (aka cast) inside
intToStringL.

2 The Gradual Information Flow Language

We formalize our ideas for gradual security for an idealized language called λgif ,
which extends the simply typed λ-calculus with gradual information flow.

The syntax of λgif is presented in figure 1. Raw types a include integers
(Int), booleans (Bool), strings (Str), and function types (A→ B). Types A are
labeled raw types (ak). Security labels (k) denote the confidentiality or integrity
of a particular value or term. The set of labels form a lattice, with a ordering
operation v, join operation t, least element ⊥, and top element >.

Terms t include variables (x), function applications (t s), primitive operations
(op t), and values (v). Raw values r can be either constants (c), such as 42
or true, or functions (λx : A. t). Values v are labeled raw values (rk). The
classification operation (t : A V B) adds a label to a value. For example, 3L :
IntL V IntH evaluates to 3H .

Casts (t : A⇒p B) attempt to coerce a term t of type A into a new type B.
If the labels on the value are not compatible with type B, the cast will fail, in
which case the blame label p assigns blame to the appropriate code fragment.
For example, attempting to downcast a private integer 42H to public via the cast
42H : IntH ⇒p IntL will fail. An upcast of a public integer 42L : IntL ⇒p IntH

to a private integer however will succeed, and return the value 42L unchanged.
That is, casts do not change values, they only change static types (or else fail).

2.1 Operational Semantics

We formalize the dynamic semantics of λgif using the big-step evaluation relation
t ⇓ v, which evaluates a term t to value v: see figure 2. The [e-app] rule for
function application (t s) evaluates t to a function (λx:A. t1)k with a security
label k, evaluates the argument s to a value v, and then evaluates the substituted
function body t1[x := v] to a labeled value rm. The result of the application
depends on the function that is invoked, so the rule adds the label k of the callee
to the resulting value, yielding rmtk.

The [e-prim] rule for primitive operations (op t) refers to the δop function,
which defines the semantics of primitive operations on raw values.

There are three rules to support the cast operation, which checks if a runtime
label is compatibile with a specified static label. If the check fails then the rules
use a blame label p to identify the code that is at fault. We say that positive blame
(p) means the term within the cast is at fault and negative blame (p) means the
context containing the cast is at fault. The negation of negative blame is the
original blame label: p def= p.

The [e-cast-base] rule is for casts of base types ı (i.e. non-functions). The
cast (t : ık ⇒p ıl) evaluates t to a value rm and checks that the label m on the
value is less than the label l on the target type; if not then the [b-cast-bad] rule
will blame p. The other [b-. . .] rules simply propagate blame.

The [e-cast-fn] rule for t : (A→ B)k ⇒p (A′ → B′)l is similar to [e-cast-base],
except that the value rm produced by t is wrapped in a new function:

(λx′:A′. (rm (x′ : A′ ⇒p A)) : B ⇒p B′)⊥

which satisfies the target type (A′ → B′). The wrapper function is used to cast
the argument and result to the appropriate types. The argument x′ is cast from
the new type A′ to the original type A, which the original function r can accept.
The blame in this cast is inverted p to indicate that if this cast fails blame is
assigned to the cast context (which invoked the function with an incompatible
argument). The result of calling the function is cast to B′.

For an example of the cast rule, consider a function f of type IntL → BoolL.
If we strengthen its range via the cast f : (IntL → BoolL)⇒p (IntL → BoolH),
calling the resulting wrapper function f ′ : IntL → IntH will always succeed
since the result res of f is guaranteed to be public and f ′ casts res to a private
boolean, which will always succeed. If, however, we strengthen the domain with
the cast f : (IntL → BoolL) ⇒p (IntH → BoolL), the argument x′ must be
downcast (x′ : IntH ⇒p IntL) and will fail when x′ is private.

The final two rules support classification, marking data as having higher
confidentiality (or alternatively lower integrity). The [e-classify-base] rule is
used for classifying base types. The classification t : ık V ıl adds the target label
l to the data by evaluating t to a value rm and joining l to label m.

The [e-classify-fn] rule for t : (A → B)k V (A′ → B′)l returns a wrapper
function

(λx′:A′. (rm (x′ : A′ V A)) : B V B′)mtl

Figure 2: λgif Operational Semantics

t ⇓ v

v ⇓ v
[e-value]

t ⇓ (λx:A. t1)k

s ⇓ v t1[x := v] ⇓ rm

t s ⇓ rmtk
[e-app]

r = δop(r1, · · · , rn)

ti ⇓ rki
i k = tki

op t ⇓ rk
[e-prim]

t ⇓ rm

m v l
(t : ık ⇒p ıl) ⇓ rm

[e-cast-base]

t ⇓ rm m v l
v = (λx′:A′. (rm (x′ : A′ ⇒p A)) : B ⇒p B′)⊥

(t : (A→ B)k ⇒p (A′ → B′)l) ⇓ v
[e-cast-fn]

t ⇓ rm

(t : ık V ıl) ⇓ rmtl
[e-classify-base]

t ⇓ rm

v = (λx′:A′. (rm (x′ : A′ V A)) : B V B′)mtl

(t : (A→ B)k V (A′ → B′)l) ⇓ v
[e-classify-fn]

t ⇓ blame p

t ⇓ rm

m 6v l
(t : ak ⇒p bl) ⇓ blame p

[b-cast-bad]

ti ⇓ vi ∀i ∈ 1..j − 1
tj ⇓ blame p

op t ⇓ blame p
[b-prim]

t ⇓ blame p

t s ⇓ blame p
[b-app-l]

t ⇓ v
s ⇓ blame p

t s ⇓ blame p
[b-app-r]

t ⇓ blame p

(t : ak ⇒p bl) ⇓ blame p
[b-cast]

t ⇓ blame p

(t : A V B) ⇓ blame p
[b-classify]

that adds the labels in A to the argument and the labels in B′ to the result.
In addition, the security label of the function type is maintained by giving the
wrapper function the label from the original function (m) joined with the label
from the function being cast to (l).

3 Termination Insensitive Non-Interference

The central guarantee provided by our semantics is non-interference, which in-
formally states that two runs of the same program that differ only in private
data will not produce different public results. We formalize the notion of two
terms differing only in private data via the equivalence relation (∼H) defined in
figure 3. Essentially, two values are equivalent if either (1) both are at least as
secure as H (where H is an arbitrary lattice element) or (2) their subterms are
equivalent.

Theorem 1 (Termination Insensitive Non-Interference).
If t1 ∼H t2 and t1 ⇓ v1 and t2 ⇓ v2 then v1 ∼H v2.

Figure 3: Equivalence

v ∼H v

H v m1 H v m2

rm1
1 ∼H rm2

2

[eq-val1]
r1 ∼H r2

rm
1 ∼H rm

2

[eq-val2]

r ∼H r

t1 ∼H t2

(λx:A. t1) ∼H (λx:A. t2)
[eq-fun]

c ∼H c
[eq-const]

t ∼H t

x ∼H x
[eq-var]

t1 ∼H t2 s1 ∼H s2

(t1 s1) ∼H (t2 s2)
[eq-app]

t1 ∼H t2

(t1 : A⇒p B) ∼H (t2 : A⇒p B)
[eq-cast]

ti ∼H t′i i ∈ 1..n

(op t) ∼H (op t′)
[eq-prim]

t1 ∼H t2

(t1 : A V B) ∼H (t2 : A V B)
[eq-classify]

Proof. By induction on the derivation of t1 ⇓ v1 and case analysis on the last
rule used in the derivation.

Note that since non-interference is termination insensitive two different pro-
gram runs could differ in their termination behavior (e.g. one could run to normal
completion while the other terminates due to an attempted leaking of private
data). The termination behavior permits an attacker to learn at most one bit of
information about a value per execution1. Termination sensitive non-interference
is a stronger guarantee but requires verifying that every loop with a confidential
loop test eventually terminates, which is rather difficult (see for example [7]).

Note that blame is an additional termination channel. We could have two
equivalent terms where one term evaluates to a value and the other fails by
assigning blame. This does not affect termination insensitive non-interference
since assigning blame is just another method of termination.

4 Gradual Information Flow Types

The runtime semantics detects bad downcasts in order to guarantee termination
insensitive non-interference. However, we also want to catch security violations
at compile time, where possible. To achieve this goal, we next develop a gradual
type system where the labels on static types provide an upper bound on the
labels of corresponding dynamic values.

1 Though Askarov et al. [3] point out that an attacker could use intermediary output
channels to leak more than a single bit, but only through a brute-force attack

The type system is given by the typing relation Γ ` t : A, which judges
a term t to have type A under the typing environment Γ : see figure 4. The
[t-prim] rule enforces that for each primitive operation op t, the raw types ai

are compatible with the type signature type(op) : a1× . . .×an → b. It also joins
the labels from each argument type (l = tli) into the result type bl so that the
resulting type will be at least as secure as the most secure argument.

The [t-app] rule for function application (t s) judges t to have the function
type (A → bk)l and the argument s to have a type A′ that is a subtype of
A. Subtyping allows a function expecting a private input to also accept public
arguments, since it will use both safely. In addition, the resulting type bk is
joined with the function’s label l since the result depends on the function being
used.

The [t-cast] rule for t : A ⇒p B enforces that A and B are identical apart
from security labels. The operation b.c defined in figure 4 strips labels from a
λgif type to consider just the base types. Note that a well-typed cast may fail
at runtime if the runtime security labels are not compatible.

The [t-classify] rule for t : A V B checks that B has higher security labels
than A. This rule uses the positive subtyping relation (<:+) instead of the stan-
dard subtyping relation (<:) since it is not acceptable to lower the security label
of a function’s domain with a classification. If this rule used standard subtyping,
then the classification t : IntH → IntH V IntL → IntH would be valid, which
we do not want.

The full subtyping relation is given in figure 4. Two types are subtypes if
they have the same base type and their labels are compatible (l v k). If the
types are function types, then the labels must be compatible and the domains
must be contravariant (A′ <:A) and the ranges covariant (B <:B′).

The typing system ensures that the labels in each static type is a conservative
upper bound on the labels of corresponding runtime values.

We note that if a term t is well typed and we evaluate t then the resulting
value v will still be well typed with the same type.2

Theorem 2 (Preservation).
If ∅ ` t : A and t ⇓ v then ∅ ` v : A

The type system defers cast checks to the runtime system, since the safety of
downcasts cannot be determined by the typing rules. For example, v : IntH ⇒p

IntL will succeed if v has a public runtime label but it will fail if the label is
private. However, we can still use types to partially reason about which cast
failures may occur. In particular, if two types are subtypes in a cast, then it
is not possible for either positive or negative blame to occur. Furthermore, we
can decompose the subtyping relation into positive and negative subtyping (see
figure 4), in a manner similar to [1, 2, 27]. If the types in a cast are positive (resp.
negative) subtypes then the cast cannot produce positive (resp. negative) blame.

2 Since we are using a big-step semantics to simplify the proof of non-interference we
omit the standard progress theorem, which is difficult to show in a big-step semantics.

Figure 4: λgif Typing Rules

Γ ` t : A

Γ ` cl : type(c)l
[t-const]

x : A ∈ Γ
Γ ` x : A

[t-var]

Γ, x : A ` t : B

Γ ` (λx:A. t)l : (A→ B)l
[t-abst]

Γ ` t : A A<:+ B

Γ ` (t : A V B) : B
[t-classify]

Γ ` t : (A→ bk)l

Γ ` s : A′ A′ <:A

Γ ` t s : bktl
[t-app]

Γ ` t : A bAc = bBc
Γ ` (t : A⇒p B) : B

[t-cast]

Γ ` ti : ali
i i ∈ 1..n

type(op) : a1 × . . .× an → b
l = tli

Γ ` op t : bl
[t-prim]

A<:B

l v k
ıl <: ık

[sub-base]
l v k A′ <:A B <:B′

(A→ B)l <: (A′ → B′)k
[sub-app]

l v k
ıl <:+ ık

[sub-p-base]
l v k A′ <:− A B <:+ B′

(A→ B)l <:+ (A′ → B′)k
[sub-p-app]

k v l
ıl <:− ık

[sub-n-base]
k v l A′ <:+ A B <:− B′

(A→ B)l <:− (A′ → B′)k
[sub-n-app]

bAc : λgif types→ λstlc types

b(A→ B)kc = bAc → bBc
bakc = a

Theorem 3 (Blame Theorem).

1. If ∅ ` t : A and ∀(t′ : B ⇒p C) ∈ t, B<:C then t 6⇓ blame p and t 6⇓ blame p.
2. If ∅ ` t : A and ∀(t′ : B ⇒p C) ∈ t, B <:+ C then t 6⇓ blame p.
3. If ∅ ` t : A and ∀(t′ : B ⇒p C) ∈ t, B <:− C then t 6⇓ blame p.

Proof. By contradiction assuming that blame has occurred.

5 Related Work

Information flow has a long history of investigating both static and dynamic ap-
proaches to track information going back to the work of Denning [8, 9]. Sabelfeld
and Myers have an extensive survey of the field [18]. Our paper provides a syn-
thesis of prior static and dynamic techniques.

There are a number of approaches that use type systems for information
flow. Volpano et al. [26] formulate the work of Denning as a type system and
prove its soundness. Heintze and Riecke [13] extend a simple calculus that uses

a type system to track direct and indirect object creators and readers. Pottier
and Simonet [17] present information flow type inference for a simplified ML.

Some approaches use purely dynamic techniques. Austin and Flanagan [4,
5] dynamically track information flow. Shroff et al. [19] dynamically track infor-
mation flow by tracking indirect dependencies of program points. Devriese and
Piessens [10] take an alternative approach called secure multi-execution that
runs the program multiple times, once for each security level.

Several approaches use a hybrid of static analysis with dynamic checks during
runtime to enforce information-flow guarantees. This idea is similar to our work
but our contribution is to allow the programmer to choose when to use dynamic
checks and when to use static typing. Chandra and Franz [6] use both static
and dynamic techniques for the Java Virtual Machine and allow policies to be
changed at runtime. Myers [15] defines an extension to Java called JFlow (which
has become Jif [14]) using the hybrid method.

Research on integrating static and dynamic type systems also has a large
body of work which we take as our starting point for extending types with secu-
rity labels. Thatte [22] uses structural subtyping and the notion of quasi-static
typing to integrate static and dynamic types. Tobin-Hochstadt and Felleisen [23]
automatically infer contracts on untyped modules and formulate Typed Racket [24,
25]. Gronski et al. [12] use hybrid type checking, which integrates static type
checking with dynamic contract checking in the Sage language. Siek and Taha [20]
present gradual typing which uses runtime casts when types are not known at
compile time. Wrigstad et al. [28] use the notion of like types in the Thorn lan-
guage. Ahmed et al. [21, 1, 27] combine static and dynamic types with casts and
blame; much of our formulation follows their methods and notation but with the
addition of security labels and information flow.

6 Conclusion

We have presented an idealized language for gradual security. The language
enables programmers to mark data as confidential, and the language runtime
tracks confidential data through all program operations, allowing subsequent
cast checks to ensure that sensitive data is not released inappropriately. In this
way, termination insensitive non-interference is guaranteed in a dynamic manner.

In addition, types can be gradually refined with security labels to document
interface expectations and to statically reason about the data. These labels need
not be added all at once; instead, dynamic casts mediate between conventionally
typed code (with no security labels) and precisely typed code (with labels).

We show how the notions of positive and negative subtyping help reason
about which casts may fail at run-time, and who may be blamed for such failures.

This work represents an initial exploration in terms of an idealized language,
illustrating some key ideas and correctness properties. Much work remains to
scale up these techniques to realistic languages and to validate the practical
utility of gradual security. In particular, we have not yet addressed assignments,
which introduce some difficulties for dynamic information flow due to implicit
flows, and which remains an important topic for future work.

References

1. A. Ahmed, R. Findler, J. Matthews, and P. Wadler. Blame for all. In Proceedings
for the 1st workshop on Script to Program Evolution, pages 1–13. ACM, 2009.

2. A. Ahmed, R. Findler, J. G. Siek, and P. Wadler. Blame for all, 2011. Draft copy,
to appear in POPL 2011.

3. A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive nonin-
terference leaks more than just a bit. In ESORICS ’08: Proceedings of the 13th
European Symposium on Research in Computer Security, pages 333–348, Berlin,
Heidelberg, 2008. Springer-Verlag.

4. T. H. Austin and C. Flanagan. Efficient purely-dynamic information flow analysis.
In PLAS ’09: Proceedings of the ACM SIGPLAN Fourth Workshop on Program-
ming Languages and Analysis for Security, pages 113–124, New York, NY, USA,
2009. ACM.

5. T. H. Austin and C. Flanagan. Permissive dynamic information flow analysis. In
Proceedings of the 5th ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security, pages 1–12. ACM, 2010.

6. D. Chandra and M. Franz. Fine-grained information flow analysis and enforcement
in a java virtual machine. In ACSAC, pages 463–475. IEEE Computer Society,
2007.

7. B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving con-
ditional termination. In Computer Aided Verification, pages 328–340. Springer,
2008.

8. D. E. Denning. A lattice model of secure information flow. Communications of the
ACM, 19(5):236–243, 1976.

9. D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. Communications of the ACM, 20(7):504–513, 1977.

10. D. Devriese and F. Piessens. Noninterference through secure multi-execution. Se-
curity and Privacy, IEEE Symposium on, 0:109–124, 2010.

11. R. B. Findler and M. Felleisen. Contracts for higher-order functions. In Proceedings
of the International Conference on Functional Programming, pages 48–59, 2002.

12. J. Gronski, K. Knowles, A. Tomb, S. N. Freund, and C. Flanagan. Sage: Practi-
cal hybrid checking for expressive types and specifications. In Proceedings of the
Workshop on Scheme and Functional Programming, pages 93–104, 2006.

13. N. Heintze and J. G. Riecke. The SLam calculus: Programming with secrecy and
integrity. In Symposium on Principles of Programming Languages, pages 365–377,
1998.

14. Jif homepage. http://www.cs.cornell.edu/jif/, accessed October 2010.
15. A. C. Myers. JFlow: Practical mostly-static information flow control. In Symposium

on Principles of Programming Languages, pages 228–241, 1999.
16. A. C. Myers and B. Liskov. A decentralized model for information flow control. In

Symposium on Operating System Principles, pages 129–142, 1997.
17. F. Pottier and V. Simonet. Information flow inference for ML. Transactions on

Programming Languages and Systems, 25(1):117–158, 2003.
18. A. Sabelfeld and A. C. Myers. Language-based information-flow security. Selected

Areas in Communications, IEEE Journal on, 21(1):5–19, Jan 2003.
19. P. Shroff, S. F. Smith, and M. Thober. Dynamic dependency monitoring to secure

information flow. In CSF, pages 203–217. IEEE Computer Society, 2007.
20. J. G. Siek and W. Taha. Gradual typing for functional languages. In Proceedings

of the Workshop on Scheme and Functional Programming, 2006.

21. J. G. Siek and P. Wadler. Threesomes, with and without blame. In POPL, pages
365–376, 2010.

22. S. Thatte. Quasi-static typing. In POPL 90 Proceedings of the 17th ACM SIG-
PLANSIGACT symposium on Principles of programming languages, pages 367–
381. ACM, 1990.

23. S. Tobin-Hochstadt and M. Felleisen. Interlanguage migration: From scripts to
programs. In Companion to the 21st ACM SIGPLAN symposium on Objectoriented
programming systems languages and applications, pages 964–974. ACM, 2006.

24. S. Tobin-Hochstadt and M. Felleisen. The design and implementation of typed
scheme. ACM SIGPLAN Notices, 43(1):395–406, 2008.

25. S. Tobin-Hochstadt and M. Felleisen. Logical types for untyped languages. In
Proceedings of the 15th ACM SIGPLAN international conference on Functional
programming, pages 117–128. ACM, 2010.

26. D. Volpano, C. Irvine, and G. Smith. A sound type system for secure flow analysis.
Journal of Computer Security, 4(2-3):167–187, 1996.

27. P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In Proceedings
of the Workshop on Scheme and Functional Programming, 2007.

28. T. Wrigstad, F. Nardelli, S. Lebresne, J. Östlund, and J. Vitek. Integrating typed
and untyped code in a scripting language. In Proceedings of the 37th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages
377–388. ACM, 2010.

29. S. A. Zdancewic. Programming languages for information security. PhD thesis,
Cornell University, 2002.

