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Abstract

We have created a content-based image retrieval framework for computed tomography images of 

pulmonary nodules.  When presented with a nodule image, the system retrieves images of 

similar nodules from a collection prepared by the Lung Image Database Consortium (LIDC). The 

system 1) extracts images of individual nodules from the LIDC collection based on LIDC expert 

annotations, 2) stores the extracted data in a flat XML database, 3) calculates a set of quantitative 

descriptors for each nodule that provide a high-level characterization of its texture, and 4) uses 

various measures to determine the similarity of two nodules and perform queries on a selected 

query nodule. Using our framework, we compared three feature extraction methods: Haralick 

co-occurrence, Gabor filters, and Markov random fields. Gabor and Markov descriptors perform 

better at retrieving similar nodules than do Haralick co-occurrence techniques, with best 

retrieval precisions in excess of 88%. Because the software we have developed and the reference 

images are both open source and publicly available they may be incorporated into both 

commercial and academic imaging workstations and extended by others in their research.

Background

In the continuing battle against lung cancer, computed tomography (CT) scanning has been 

found to increase the detection rate of pulmonary nodules [1]. Much work has been done to 

develop computer assisted diagnosis and detection (CAD) systems for pulmonary nodules in CT. 

We hypothesize that we can also reduce the uncertainty of the radiologist in identifying 

suspicious pulmonary nodules by providing a visual comparison of a given nodule to a collection 

of similar nodules of known pathology. To eventually test this hypothesis we first need to develop 

a content-based image retrieval (CBIR) system for pulmonary nodules in CT. The human 

observer (radiologist) manually (or semi-automatically or automatically) segments a nodule 



from a clinical case. The system computes a set of quantitative descriptors for that nodule (our 

current work focuses on texture-based descriptors) and compares those descriptors to the 

descriptors of known nodules. The underlying assertion is that if a known malignant nodule has 

certain computable features, then unknown nodules with similar computable features would be 

malignant.

Simply put, our system provides a way of performing a “look-up” on a query image to return 

similar images from a collection. Much research is being done to see which methods of 

comparing and retrieving similar images are best. For a detailed description of CBIR systems for 

the medical field, we suggest the review by Muller et al. [2] Our work compares three different 

sets of texture feature descriptors to determine which one has the best precision in retrieving 

similar nodules.

There are generally two types of medical content-based image retrieval (CBIR) systems: 1) those 

that retrieve entire anatomic structures, and 2) those that retrieve abnormalities or pathologies 

within an anatomical structure. The latter problem is more complex than the former, but more 

useful for CAD. Thus we have focused our efforts on images of pulmonary nodules, rather than 

images of the entire lung. 

The first known large-scale comparison of texture features was done by Ohanian and Dubest in 

1992 [3]. They tested 16 Haralick co-occurrence features, 4 Markov random field features, 16 

Gabor filter features, and 4 fractal geometry features on 3200 32x32 sub-images and found that 

co-occurrence performed the best. However, while Ohanian and Dubest evaluated the feature 

types in respect to their ability to classify an image's texture correctly, we sought to evaluate the 

features by their performance in an image retrieval system. There are several other CBIR projects 

currently underway in the medical field in general and particularly with lung CT images. One of 

these, called ASSERT, is being developed at Purdue University and uses a variety of different 

image features, including co-occurrence statistics, shape descriptors, Fourier transforms, and 

global gray level statistics. The system also includes physician-provided ratings of features such 

as homogeneity, calcification, and artery size [4,5].



There are, however, problems associated with content-based retrieval of medical images, such as 

the difficulty of automatic segmentation, the large variability of feature selection, and the lack of 

standardized toolkits and evaluation methods [6,7,8]. There have been several efforts over recent 

years to solve some of these problems. For instance, the Lung Image Database Consortium 

(LIDC) collection was specifically developed to support evaluation and comparison of chest CAD 

systems [9]. It can be used similarly to develop, evaluate and compare CBIR systems.

There are also a growing number of open source frameworks for medical imaging applications, 

such as the Visualization Tookit (VTK) [10], the Insight Toolkit (ITK) [11] for segmentation and 

registration and the Image-Guided Surgery Toolkit (IGstk) [12]. All of these projects are 

community-driven and freely available on their websites. In addition, the National Cancer 

Institute is funding the development of an eXtensible Imaging Platform (XIP) through its Cancer 

Bioinformatics Grid (caBIG) program [13].

We believe that the nature of pulmonary nodules (characterized by very small images and 

significant physician disagreement) justifies the creation of a specialized system for nodule 

retrieval. Our goal was to build an open source, independent, extensible, content-based image 

retrieval system for pulmonary nodules in CT images and to contribute this system to the 

growing open source medical imaging community.

Material and Methods

This work is exempt from human subjects research regulation. It makes use of a publicly 

available, completely de-identified data set (LIDC). We used a portion of the LIDC data 

consisting of 90 CT studies of the chest, each containing between 100 and 400 DICOM images. 

An XML data file containing the expert annotations from the LIDC consortium accompanies 

each data set. 

The LIDC expert annotations include a freehand outline of nodules on each CT slice in which the 

nodules are visible, along with subjective ratings on a 5- or 6-point scale of the following 

pathological features: calcification, internal structure, subtlety, lobulation, margin, sphericity, 



malignancy, texture and spiculation. Our image extraction routine uses the outlines to mask the 

original DICOM image and produce individual nodule images exactly as segmented by the LIDC 

expert viewers.

Figure 1 is a histogram of nodule sizes as measured by the standard Response Evaluation Criteria 

In Solid Tumors (RECIST) criteria of major axis length. Elsewhere, we have used a 2D area 

measurement (total pixels) for the nodule size because texture is a surface property and therefore 

the number of total pixels is more relevant to texture analysis. We discarded all nodule images 

smaller than 5x5 pixels (around 3x3 mm) because images this small would not have yielded 

meaningful texture data [14]. The final database contained 2424 images of 141 unique nodules. 

The median image size was 15x15 pixels and the median actual size was approximately 10x10 mm. 

The smallest nodules were roughly 3x3 mm, while the largest were over 70x70 mm. Eighty-eight 

percent of the images were 20x20 mm or smaller.

Figure 2 provides an overview of the various stages of the content-based image retrieval process:

Figure 1. Image Size Histogram



1. Extract individual nodule images from the LIDC DICOM images based on data from 

physician annotations.

2. Store the extracted data in a database.

3. Calculate a set of quantitative descriptors that provide a high-level characterization of 

each image's texture.

4. Use various measures to determine how similar one image is to another.

We have previously described the low-level image features used to capture the nodule’s image 

texture [15].

To develop our system, we used Microsoft C# and the .NET 2.0 Framework. The .NET Framework 

is a software library that provides a large range of pre-built solutions, including collections, file 

access, and graphical user interfaces. This allowed for rapid development and deployment over 

the limited period of time allotted for this project. Our design of the core library contains four 

major components (see Figure 3 for the class diagram), corresponding to the four stages of the 

CBIR process described above.

Figure 2. System Overview



LIDC Importer

The LIDCImport module extracts data from the LIDC XML files and saves this data to the 

formats used by our library. It also initiates the calculation of features for all images in the 

dataset.

Data Structures

There are two main data structures: LIDCNodule and LIDCNoduleDB. The first represents a 

single nodule image. It contains data elements that store information about the nodule and its 

attributes. Because there are usually many images of the same nodule, we have included a field 

for storing a nodule identification number so that all images of a particular nodule can be 

retrieved by querying for this number. The LIDCNodule class also stores links to the raw image 

data on disk, and knows how to read/write its data to an XML file. Currently, all feature data are 

stored in this class. The second data structure encapsulates a collection of LIDCNodule objects. 

It provides the core functionality of a CBIR system by allowing for the normalization and 

querying of the image dataset. It also handles the reading and writing of XML files. Figure 4 

contains sample excerpts from our XML files.

Figure 3. Class Diagram



Feature Extractors

There are currently three feature extraction classes: GlobalCooccurrence, GaborFilter, and 

MarkovRandom. All of these implement the FeatureExtractor interface, which requires a 

common method called ExtractFeatures. This method takes an LIDCNodule as a parameter, and 

should access DICOM image data for the image, calculate its features, and then save that feature 

data back into the LIDCNodule object. This cluster facilitates an implementation of the Strategy 

software design pattern [16] for interchangeable image features.

Similarity/Querying

The Similarity class contains functions that implement various similarity measures and are used 

by the LIDCNoduleDB class to compare nodule features during query operations. The various 

methods used to compare image features have been previously described [15].Once the database 

has been created and features have been extracted, the system is able to respond to a query 

image by producing a list of images from the database that have been determined to be closest to 

the query image.

There is also a separate package of classes that comprise the user interface portion of our project, 

but these are entirely application-specific and will not be discussed. We used the 

openDICOM.net library for all DICOM file handling [17].

Figure 4. Sample XML



Precision

Our initial analysis of the LIDC expert annotations showed significant discrepancies between the 

observers' annotations, so we decided to base our calculation of the retrieval precision on the 

assumption that the first results returned by the system for a particular nodule should be other 

instances of that same nodule, perhaps on a different CT slice or marked and rated by a different 

radiologist. Thus, in the absence of subjective physician agreement for all nodules, ground truth 

was determined by objective, a priori knowledge about the nodules. In this way, we have defined 

precision as:

Precision = (# of retrieved images of the query nodule) / (# of retrieved images)

We used our system to run a query on each of the 2424 images of the 141 nodules in the database 

and examined the mean precision under a variety of conditions:

1. The queries were run on all nodules in the database with various numbers of items to be 

retrieved: 1, 2, 3, 5, and 10.

2. The nodule database was divided into four roughly equal groups based on the size 

(measured as 2D area) of the nodule images and precision calculations were run on each 

group separately with one item retrieved. 

3. The query dataset was restricted to only those nodules on which a certain number of the 

LIDC viewers gave the nodule the same quantitative “texture” rating (this was given on a 

5-point scale) and precision calculations were run with one item retrieved. 



Results

Figure 5 shows that as we vary the number of items retrieved, Gabor and Markov perform nearly 

identically, with the best mean precision of about 88% when one item is retrieved. The graph 

also shows that Markov performs similarly to Gabor when fewer than five items are retrieved. 

However, for five and ten images retrieved, Gabor shows a marked improvement over Markov. 

Figure 6 shows the relationship between nodule size and mean retrieval precision. The graph 

shows that the precision tends to increase for larger images, except for an unexplained decrease 

in precision in the third group (235-625 total pixels).

Figure 5. Mean Precision vs. Retrieved Images

Figure 6. Mean Precision vs. Image Size



Figure 7 shows the relationship between LIDC expert agreement and the mean precision of 

image retrieval. When at least two radiologists agreed, the mean precision increased from 88% 

to 96% for both Gabor and Markov texture models. Once three or four radiologists agreed, the 

precision increased to nearly 100%.

Figure 8 shows a screen capture of the nodule database browser and query interface.

Figure 8. Nodule Viewer

Figure 7. Mean Precision vs. Radiologist Agreement



Discussion

Co-occurrence methods perform noticeably worse than both Gabor and Markov methods with a 

mean precision of only 29% when retrieving one item. One possible explanation is that the co-

occurrence method encodes the texture information at the global (image) level while both Gabor 

and Markov are calculated at the local (pixel) level, which allows for a more robust comparison.

Similarly, Markov and Gabor methods also perform nearly identically and co-occurrence again 

performs worse when looking at the relationship between lesion size and precision. Generally, 

these methods appear to perform better on larger images. 

Lastly, our results show that as the number of experts in agreement increases so does the 

precision of the retrieval. This supports a hypothesis that as experts agree on the nature of a 

lesion the computable descriptors of the lesion become more homogeneous. We have 

preliminary results that suggest, however, that the features “computed” by the humans and by 

our software to make similarity decisions are not the same. This is an active area of research.

With respect to open source software, we have developed a system that provides a strong base for 

research using the LIDC data set. With minor modifications it could also be useful to researchers 

using other data sets as well. The system was designed to be extensible and easy to use. Because 

all the feature extraction classes are guaranteed to have an ExtractFeatures method, and because 

standard enumeration methods are implemented for the database class, it is easy to write code 

that calculates novel features for all nodules in the database. By keeping the logic for the 

different phases of the image retrieval process in separate modules, we were able to develop the 

various modules separately and then integrate them for the final project without major 

difficulties. The modular design also allowed us to automate the retrieval precision calculations.

Recent advances in CT allows for robust extraction and re-assembly of 3D volumes. These 

advances hold great promise for improving content-based CBIR for lung nodules, because they 

would increase the sample size of pixels (or in this case “voxels”) for each nodule and reduce 

errors introduced by inconsistent patient orientation. Our system could be easily extended to 



include volumetric data analysis, as long as new algorithms are developed to extract and compare 

features in three dimensions.

Conclusions

The BRISC project provides a simple base for future work in pulmonary nodule detection and 

diagnosis. The current design allows for the importing, browsing, and retrieval of lung nodule 

images from the LIDC database. Local Gabor and Markov methods of texture characterization 

perform better than global Haralick co-occurrence methods. The precision of image retrieval can 

be very high and so this technique has the potential to be useful as an adjunct to radiologist 

decision making in the context of pulmonary nodules in CT images.

The entire project is available online at http://brisc.sourceforge.net. This work was supported by 

the National Science Foundation under Grant No.0453456.
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